THE DisTRIBUTED CoMPUTING COLUMN

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

Clock synchronization is one of the fundamental problems in distributed com-
puting, playing a critical role at one of the lowest levels of the protocol stack. As
such, it is a basic building block that many higher level protocols depend on (and
many algorithm designers take for granted). It is a long-studied problem, with
foundational results going back decades and decades. And it is a basic service
that is used by numerous real-world protocols (e.g., in the form of NTP).

In this column, Swen Jacobs and Christoph Lenzen give an overview of the
state of the art, as well as argue that there remains a lot of work left to be done!
They focus on the problem of robustness: most current synchronization protocols
are not secure, and most are susceptible to fairly simple attacks. Protocols like
NTP are well-known to be easy to attack, and can have severe consequences for
real-world systems like power grids and financial networks. Jacobs and Lenzen
discuss a variety of open problems in the area of (robust) clock synchronization,
including issues of redundancy, network topology, and trusted computing. They
also raise the question of how to determine whether the protocols actually work,
i.e., do they do what they are supposed to? To this end, they discuss a variety of
formal methods approaches for verifying clock synchronization protocols, includ-
ing interactive proofs, automated verification, and partial automation. Moreover,
formal methods that can prove properties related to robustness remain quite chal-
lenging!

Overall, this article provides an interesting overview of robust clock synchro-
nization, and points toward a variety of interesting open questions in the area. I
hope that you enjoy the column!

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would

like to write such a column, please contact me.

CURRENT CHALLENGES IN
RELIABLE AND SECURE CLOCK SYNCHRONIZATION

Swen Jacobs and Christoph Lenzen
CISPA Helmholtz Center for Information Security

1 The Task

This article discusses reliable and secure clock synchronization, as well as its
verification, with a focus on real-world application scenarios and open problems.
Synchronizing clocks in a network G = (V, E) 1s a fundamental task that has been
studied since the inception of the field. The goal of a synchronization algorithm
is to perpetually compute a logical clock L, at each participating network node
v € V. The optimization criteria might vary with application. In this article, we
focus on the following common choices:

o the global skew G = sup{G(¢¥)}, where G(f) = max, ey [L,(t) — L,,(?)| be-
tween any pair of nodes in the network;

o the local skew L = sup {L(t)}, where L(t) = maxy, e |L,(t) — L, (t)| be-
tween any pair of neighbors in the network;

e bounds on the logical clock rates, i.e., 1 < %(t) < « for some a > 1 In
particular, it is not permitted to simply set all logical clocks to O forever or
running them at exponentially decreasing rates.

Minimizing skew is challenging due to the inherent uncertainties in the system.
Each node is equipped with a hardware clock H, that approximates real time with
a rate error of at most ¢ — 1, i.e., for ¢ > ¢ it holds tha

! —t<H,(t")— H,) <9 —1).

In addition, communication delay cannot be known precisely. To account for this,
we assume that messages are under way for at least d —u and at most d time, where

"For notational convenience, we normalize the minimum rate to 1.
2The error is one-sided to simplify notation. Because - 1 < 1, this corresponds to (1 —p)(¢' —
H<H,®{)-H,(t) <(1+p)t' —1) forp = (¢ - 1)/2.

d is the maximum end-to-end delay and u the delay uncertainty; we assume that
W - 1d < u For the sake of simplicity, we disregard heterogeneous systems
in which the quality of clocks or links differs in this article, and pretend that all
logical clocks can be initialized perfectly, i.e., L,(0) = O for all nodes v.

The global and local skew bounds that can be achieved within this model have
been identified to be ®(uD) and O(u log,, 51, D), respectively [10,55]], where D is
the diameter of the network G. In this article, we discuss the challenges that arise
when the theory underlying these results and approaches by practitioners face a
reality in which faults and attacks are the norm. As will become clear, this leads to
a whole range of new open problems, which require not only the techniques from
distributed computing, but also cryptography and formal verification to evolve.

2 Why Do Faults and Attacks Matter?

Access to accurate time, being a basic service, is a crucial building block in many
systems. This includes critical infrastructure, meaning that poor reliability or sus-
ceptability to attacks is an immense risk on a societal scale. To make this concrete,
we now discuss several such systems and how they rely on a shared notion of time.

2.1 The Power Grid

The economic damage from even fairly short power outages is massive [12, [73,
75, [78]. At the same time, the power grid depends on microsecond accuracy in
synchronizing monitoring devices to correlate measurements well enough to func-
tion; with increasing reliance on renewable energy sources, this becomes more and
more important [25]. A failure of or successful attack on the timebase used by the
power grid could cause global failure of the system, after which recovery will take
at least several hours, cf. [27]. Attacks are viable and have been performed, with
the synchronization subsystem being a viable attack vector [81,59]].

Note that the power grid is, inherently, a highly distributed system. Hence, it is
virtually impossible to ensure that an attacker can access none of its components
at all. This means that techniques dealing with worst-case, i.e., Byzantine, faults
play a key role in securing it against attacks. As a convenient side effect, these
can also increase the resilience of the system against faults that are not caused by
attempted sabotage.

3This assumption is typically satisfied. If not, one can simulate hardware clocks with (up to a
constant) this quality by bouncing messages back and forth along network links.

2.2 Cellular and Broadcast Networks

Cellular and broadcast networks require synchronization between cells to com-
bat interference [21]; errors as small as microseconds can bring down entire net-
works [8]]. Also here, the economic stakes of failure are high. Moreover, arguably
our dependence on these networks also in times of crisis could render them critical
infrastructure as well. In contrast to the power grid, for which central processing
of measurements requires a small global skew, minimizing interference is a matter
of minimizing the local skew.

2.3 Synchronization via the Internet

A standard, if inaccurate, way of obtaining time is to ask the Internet. Typically,
this is done by querying time servers via the Network Time Protocol (NTP) [35,
65]]. While fairly inaccurate, this method is popular due to requiring no additional
resources on the client side. Thus, (too) many systems and services are likely to
depend directly or indirectly on this approach.

As we discuss later, NTP and similar services are vulnerable to several attacks.
Arguably, this means that critical services should not rely on this synchronization
method. However, the sheer volume of NTP users means that improving relia-
bility, security, and accuracy of Internet synchronization is worthwhile. It also
suggests that it is likely that some crucial services will nonetheless be subject to
NTP-based attacks.

2.4 Financial Sector

Banks are required to obtain “traceable” time with accuracy of 100 microsec-
onds or better [64]. As suggested by this standard, the advantage of responding
quicker to new information, even by milliseconds, provides a distinct advantage
in high-frequency trading, cf. [14]]. Equivalently, obtaining a timestamp “from the
past” when committing a transaction yields the same advantage. From a theoretic
point of view, the solution is to switch to a discretized, round-based market, in
which trade requests are resolved based on reception times of requests at stock
exchanges. However, such a change would require regulatory oversight to step
in [15], which could necessitate a joint international initiative. In the current sys-
tem, there is an incentive for the bank and its employees to manipulate timestamps
for the sake of profit. Since timestamping occurs within the bank’s system, it is,
in principle, trivial to do so. As previous large-scale instances of fraud and mal-
practice [9, 85] clearly demonstrate, it is ill-advised to let the fox guard the hen
house.

Note that this setting requires to rethink the time infrastructure having in mind
that the user takes the role of the potential attacker. In contrast to the other ex-
amples, here it is insufficient to make sure that time is available and correctly
recorded only at trustworthy nodes. On the other hand, accuracy requirements in
the microsecond range render it challenging to directly involve remote parties in
the timestamping procedure.

3 State of the Art

With the stage being set, let us revisit the state of the art and its limitations. As
the examples in the previous section demonstrate in abundance, reliability and
security are crucial in the wild, so this discussion will focus on these aspects.

3.1 Estimating Clock Offsets in Networks

Deployed solutions. This task is the larger part of what the Network Time Proto-
col (NTP) [36,135] and the Precision Time Protocol (PTP) [[71] seek to accomplish.
The basic protocols are not concerned with security beyond message authentica-
tion. This is insufficient to cope with any mildly determined attacker, since ver-
ifying the content of a message does nothing to ensure its timing. In absence of
bounds on communication delay, a man-in-the-middle attacker can arbitrarily and
undetectably shift perceived relative time without needing to alter the content of
messages [66]]. There are works on improving resilience to some attacks for NTP
(e.g. [41,174]) and the possibility of using redundancy to increase the resilience of
PTP has been considered as well [69]. However, what all of these works appear
to have in common is that they consider the network to be given, whereas routing
is either not considered or fixed by selecting a tree. Under these conditions, no
substantial guarantees in face of faults and attacks are possible, and hence at best
generic and vague statements are offered in this regard.

All-pairs estimation. From a theoretical angle, little has been published on
the topic either. Of course one might endeavor to simulate full connectivity, as
done in [29]. However, this approach has substantial drawbacks. In order to
achieve any significant degree of resilience against an attacker taking control of
network nodes or links, one must avoid that too many paths share the same edge
or internal node. Apart from being difficult to realize in practical networks, this
also means that one might be forced to prefer some longer paths to avoid relying
too much on few nodes and edges. In turn, this can hurt the quality of measure-
ments, as such longer paths will have increased cumulated delay uncertainty. This
suggests non-trivial trade-offs between resilience and accuracy that so far have not
been studied.

What is more, algorithms designed for a known given topology or specific
classes of networks might perform better by not relying on offset measurements
between all pairs of nodes. In other words, simulating full connectivity might
harm robustness, security, or accuracy compared to topology-aware protocols.
This conjecture is corroborated by some prior work that aims at achieving fault-
tolerant synchronization in very sparse networks [[16} 23]].

Message authentication. Cryptographic authentication needs to play a major
role for synchronization in networks. For many distributed tasks, such as consen-
sus, it can be leveraged to increase resilience. This is also true for synchronizing
clocks in fully connected systems [2]. Recall that d is the maximum end-to-end
communication delay and u its uncertainty, i.e., the time between commencing
message transmission and the receiver completing to process is between d — u and
d. It has been shown that the above resilience boost is also possible with asymp-
totically optimal skew of O(u) [56]]. However, there is a catch: this imposes the
additional constraint that d — u is a lower bound on the end-to-end delay on links
with one faulty endpoint. Intuitively, this follows from the need to use indirect
communication for authentication to be of value, together with the fact that faulty
nodes cannot be detected reliably. This entails that malicious nodes must not get
access to honest nodes’ messages prematurely or deliver their own much faster
than honest nodes; otherwise, they can enforce a decreased precision of time oft-
set measurements, which in turn decreases the accuracy of synchronization that
can be achieved. In contrast, the classic algorithm achieving the same asymptotic
skew bound of O(u) without authentication (and hence smaller resilience) [[84]
merely requires that the end-to-end delay bounds are satisfied on links between
correct nodes.

Since any lower bound for a complete network extends to arbitrary networks,
this points at potential fundamental obstacles to employing authentication for in-
creased resilience, i.e., reducing requirements on network connectivity. In partic-
ular, one must avoid that an attacker can bypass the network or otherwise signifi-
cantly speed up delivery of messages to or from nodes it controls.

3.2 Algorithms for Incomplete Networks

For complete networks, the asymptotically optimal skew of O(u) can be achieved
under optimal resilience to Byzantine (i.e., worst-case) faults 10} 24} 56, [84]]. It
is known that these guarantees can also be achieved in a self-stabilizing [22] man-
ner with small stabilization time [42, 57, 58]]. Similarly, one can simultaneously
achieve asymptotically optimal skew between arbitrary pairs of nodes as well as
neighbors [[10, 55]. These results extend to crash faults in a straightforward way,
and the algorithms can also be made self-stabilizing in asymptotically optimal
time [54, Sec. 12.3]. In contrast, little is known about tolerance of non-benign

faults or attacks in general networks.

Network augmentation. In [16], it is shown that one can augment a given
network by replacing each node with a cluster of ®(f) nodes and increasing to
number of edges by factor O(f?) to simulate the algorithm from [55]] in a way tol-
erating up to f faults in each cluster. This is resource-efficient in the sense that if
the original network was just barely connected, this overhead is necessary to han-
dle f faults in each cluster. However, networks that are already connected well
might need far fewer additional resources to enable us to achieve small skews in
spite of faults. It should also be stressed that one might need even fewer resources
when allowing for the possibility that also a small fraction of the nodes that faith-
fully execute the algorithm loses synchronization to the rest of the network. Note
that this is not merely a question of connectivity, but also of how well-suited the
available redundant paths are for synchronization, i.e., how long they are in the
distance metric induced by communication delay uncertainties. Accordingly, so
far none of these issues have been addressed in the literature.

3.3 Single Points of Failure in Deployed Systems

Radio communication. Global Navigation Satellite Systems (GNSS) are, wher-
ever available, the most convenient source of accurate time. From a global point
of view, the provider of such a system constitutes a single point of failure and
can manipulate the time perceived by all receivers. A simple, very cost-effective
method to reduce this risk is to rely on multiple GNSS services concurrently,
selecting the median time value as reference. This means that a single bad ac-
tor cannot single-handedly change the perceived time. However, given the rather
short list of available systems, the potential for collusion, and the need to receive
a large number of satellite signals to implement this solution, it is not universally
applicable.

Moreover, on the user’s side, GNSS are fairly easy to jam or, by a more so-
phisticated attacker, to spoof or subject to delay attacks [82]. The use of multiple
systems does not protect from such attacks, necessitating different means of ob-
taining or verifying the time.

Similar considerations apply to the terrestrial alternative of relying on long
wave radio communication (e.g. DCF77 in Germany [31]), which furthermore is
much less accurate than GNSS.

National Metrology Institutes (NMIs). Obtaining the time via the phone
network or possibly a dedicated link from an NMI is another option to obtain
fairly accurate time. However, relying exclusively on a single such reference again
renders it a single point of failure. It is worth to note that, despite numerous checks
and involvement of experts, there is no official standardization or documentation
of the procedure NMIs use to obtain and adjust their time, and human involvement

is no protection from bad actors. In fact, it is very plausible that, from a suitable
position within an NMI, a single person could meddle with the time of everyone
trusting in this NMI’s time. In addition, also here an attacker might manipulate
the time of a recipient or a group of recipients by delaying time messages from
the NMI, without the need for altering these messages.

Lack of standardized redundancy. One might think that, obviously, this
would prompt standardization of the use of multiple time references and/or means
of obtaining time, with the goal to improve the reliability and security of deployed
solutions. Unfortunately, nothing could be further from the truth. The examples
with best behavior are possibly the most prominent network synchronization pro-
tocols, the Precision Time Protocol (PTP) and the Network Time Protocol (NTP),
when taking into account additional literature. Regarding PTP, [69] briefly men-
tions the possibility to use redundant time references and routing paths to increase
reliability and security, without any further discussion on requirements or best
practices for doing so. Concerning NTP, Chronos makes an effort to leverage the
availability of multiple time servers to increase resilience [74], but is called out for
neglecting DNS-based attacks by [41]. Arguably, these works are efforts to plug
individual holes in a very leaky bucket, since they focus on defending against cer-
tain attacks against a system and protocol that were not designed based on security
considerations.

The user. As pointed out in the context of stock trades, it is possible that the
user might want to manipulate their local time. We conclude that there is need
for solving the task of forcing selfish or malicious parties to consistently report
timing of operations. For this purpose, one option of interest is to use trusted
computing technology, such as Trusted Platform Modules (TPM) [83] or Intel
Software Guard Extensions (SGX) [3], at the client to prevent or at least substan-
tially hamper abuse. These approaches establish trust anchors in hardware that
should provide confidentiality and integrity of crucial operations, even in light of
powerful attackers that can control the entire software stack or even have physical
access to the system. However, these techniques cannot provide a trusted, reli-
able clock by themselves. Solutions like Intel SGX must either build on shared
hardware resources between isolation domains, resulting in dependence on a po-
tentially corrupted platform clock (e.g., if the attacker manipulates voltage and
frequency scaling), or rely on higher privileged, untrusted software that can ar-
bitrarily delay operations [3]]. Even distinct coprocessors such as a TPM, which
feature an internal clock, are no reliable time reference. A TPM depends on a
properly managed platform, implying that an attacker with privileges on the sys-
tem can set the TPM clock arbitrarily into the future, or make the TPM clock run
32.5% fast or slow [83]]. In [6]], the authors seek to secure the clock against manip-
ulation, but their threat model does not account for attacks on the execution speed
(e.g., by manipulating supply voltage or temperature), and the clock still has no

guaranteed relation to UTC.

4 Does it Actually Work?

The development of clock-synchronization algorithms, as well as their implemen-
tation, are challenging and complex tasks. With this complexity comes the proba-
bility of human error. While designing algorithms, researchers will usually create
hand-written proofs that supposedly witness correctness of their algorithms, but
may contain errors. But even assuming correctness of these hand-written proofs,
they only give us theoretical guarantees that not necessarily carry over to their
real-world implementations. Therefore, it is crucial that the correctness of algo-
rithms and their implementations is fully formalized and mechanically verified.

To obtain machine-checked formal proofs, there is a range of possibilities de-
pending on the desired level of automation: interactive theorem provers allow us
to formalize a very large range of systems and prove that they satisfy expressive
formal specifications, but they require expert users and a large manual effort. In
contrast, automated verification techniques alleviate the burden on the human de-
signer, but are often restricted to certain types of systems, certain levels of abstrac-
tion, and certain properties to be proved. Between these two extremes there are
all kinds of intermediate solutions, be it partial automation in interactive proofs,
or manual efforts to massage a given system and specification until it fits into the
fragment that is supported by an automatic method. In the following, we will first
consider interactive tools, then fully automated ones, and finally techniques that
try to get the best of both worlds by combining human guidance with automation.
Regardless of the level of automation, we are interested in verification approaches
that

1. can provide guarantees that hold regardless of the size of the network (called
parameterized verification techniques)

2. have native support for faults and attacks, and

3. support real-time systems and properties.

While there is a lot of work on these aspects separately, or a combination of two of
them (in particular on the verificiation of agreement protocols without real-time
properties), will see that there are few existing approaches that support all of these
features, and those that do exist are usually very restricted in some other aspect.

Interactive Mechanized Proofs. A first step towards formal correctness guar-
antees is a precise and testable specification of the intended functionality. In con-
trast to conventional design documents that contain prose or pseudocode without

a testable semantics, a formal specification is precise, and this precision helps to
eliminate ambiguities and clarify intention. Moreover, the formal specification
can be gradually refined into an implementation, and can be checked for errors at
any time during this process.

To support our intended applications, a tool for formalization needs to cover
complex features, including concurrency, fault-tolerance, and time. A specialized
formal language that already covers a lot of this is TLA* [52, 20, 51], which can
be used to formally describe the set of all legal behaviors of a system, and is
essentially based on set theory and temporal logic. While TLA™ started as an aca-
demic tool, it has now also been used to support large-scale system development
in industry, for example at Amazon Web Services [67, 68]. TLA™ directly sup-
ports refinement of abstract specifications into more and more concrete algorithms
and implementations. Correctness of an algorithm or an implementation then can
either be shown by interactive mathematical reasoning in the TLA™ proof sys-
tem (TLAPS) [18], or by discharging certain types of proof obligations to SMT
solvers [63] or model checkers [88,46]. While TLA* does not explicitly support
real-time properties, it has been argued that they can easily be modeled within
the existing language, but automatically discharging the resulting proof obliga-
tions is a major challenge [53]. A number of languages and techniques have been
inspired by TLA™" and have similar strengths and weaknesses, for example the
Ironfleet [76, [34] framework.

In addition to these specialized languages, more general interactive theorem
provers have been used to reason about distributed systems. In particular, the
PVS system has been used to verify certain textbook clock synchronization algo-
rithms [77]. Moreover, Coq has been used as the basis of the Verdi framework
for implementing and verifying distributed systems [86]. The focus of Verdi is
on the use of verified system transformers, which simplify the task of reasoning
about the correctness of refinements on the way from high-level specifications
to low-level implementations. Like TLA™ however, real-time properties are not
directly supported. Another interactive theorem prover that has been used to de-
velop specifications and proving correctness of implementations is HOL4 [79].
It has been used to verify low-level aspects like the network stack [11] or mes-
sage queues [72], but it would take significant effort to scale such efforts to more
complex systems.

Automated Verification. Automated verification techniques for distributed sys-
tems can be separated into those that give rigorous guarantees for systems with a
parametric number of components, and those that under-approximate the possible
behaviors of a distributed system by only considering a fixed number of compo-
nents.

One of the most prominent tools is Alloy [39], which is not specialized to dis-
tributed systems, but allows to model infinite-state software systems in general.
Alloy uses a bounded verification approach that makes verification decidable and
can find many bugs, but does not give reliable correctness guarantees in general.
Another tool with a similar behavior is MoDist [87]: given the code of a node
in a distributed system, it instantiates it for a fixed number of processes and uses
a model checking approach to check safety and liveness properties. Thus, errors
that only manifest in systems with many processes will not be found, even if the
search space for the chosen number of processes is explored exhaustively. How-
ever, MoDist has two notable features that many other approaches lack: first, it
works directly on unmodified executable code, simulating the OS and the network,
including failures such as message reordering and machine crashes. Second, it in-
cludes some support for real-time properties, in particular timeouts, by providing
a virtual clock mechanism that approximates the behavior of a real clock, restrict-
ing its analysis to certain parts of the code and to simple comparisons against
certain program variables.

A slightly different support for obtaining correct distributed systems is pro-
vided by Mace [43], which allows the designer to specify a distributed system
in a restricted and structured domain-specific language, model check this high-
level specification (with a special focus on liveness properties [44]), and compile
it to a C++ implementation that inherits the desired properties and includes code
for failure detection and handling. Like Alloy and MoDist, model checking is
restricted to a fixed number of processes.

Another completely automated approach is implemented in MCMT, a model
checker modulo theories [30]]. The idea is to model distributed systems as infinite-
state systems whose state variables are arrays (of unbounded length), and use
SMT solvers to compute reachable sets of states. Since this reasoning naturally
involves quantification, which is in general not supported in a complete way by
SMT solvers, the technique relies on heuristics for quantifier instantiation that are
tailored for the use case of model checking. The approach assumes that the sys-
tem is given as an array-based transition system and does not provide support for
automatic translation from executable code. On the other hand, it has been used
to reason about distributed systems with a real-time component, such as differ-
ent versions of the Fischer protocol [17]. An extension of the MCMT approach
that expands its applicability and also includes an integration with a deductive
verification framework has recently been introduced [19].

Finally, there are parameterized model checking techniques that are often re-
stricted to a system model with certain types of communication or synchroniza-
tion, but within such a fragment provide a decision procedure for properties that
hold regardless of the number of components [13, 37, 38]]. However, most of the
existing results in this direction do not support strong attacker or fault models.

An exception is ByMC, the Byzantine Model Checker [47]: it is based on thresh-
old automata that can model distributed protocols that count messages and make
progress when a certain number of messages (the threshold) has been received,
and it supports Byzantine faults in a number of nodes that is defined relative to
the threshold. ByMC supports parametric verification of safety and liveness prop-
erties, i.e., a violation of the properties will be found regardless of how many
processes are needed to exhibit the error, and if no violations are found, the sys-
tem is provably correct for any number of processes [48]. While ByMC supports
strong attackers, like most parameterized model checking approaches it does not
support real-time properties.

There is a line of research in parameterized model checking that is able to
give timing guarantees by modeling processes as timed automata [|1]], but in turn
it does not support strong attacker models. However, an approach based on timed
automata has recently been used to model and verify a basic gossiping clock syn-
chronization protocol [80] (with explicit modeling of possible faulty behavior).
In addition, there are approaches that support the verification of symbolic time
bounds [40], but it is unclear if these can be extended to the verification of clock
synchronization protocols.

Techniques with Partial Automation. Above, we mentioned the MoDisT tool,
which verifies an abstract algorithm and compiles it to an implementation that is
guaranteed to inherit the desired properties. A more intricate variant of this ap-
proach is taken by the Civl verification framework [49, 50], which is based on an
approach called layered refinement. The basic idea is that a proof of correctness
does not relate an implementation to a specification in a single step, but in several
refinement steps that abstract away details from the implementation, while pre-
serving the properties that are necessary to prove the specification. In this case,
the developer is responsible for designing the different refinement layers, while
correctness of the refinements can then be fully automated (for a fixed number of
processes). A similar approach is taken by the Armada language and tool [60],
which additionally allows the developer to extend the library of proof strategies,
potentially enabling the verification of a larger range of programs.

Another important recent development that merges the interactive and auto-
mated approaches is Ivy [62], a “multi-modal” verification tool that allows inter-
active TLA*-style proofs, but also has a strong focus on automated verification in
decidable fragments, which ensures its predictability and stability against small
perturbations in the input.

In some of the approaches mentioned before, the hard part of verification is
the identification of an inductive invariant that implies the desired safety property.
The 14 approach [[61] aims at automating the search for inductive invariants by effi-

ciently identifying invariants on small instances of the system (based on symbolic
model checking), and generalizing them to invariants that hold for the protocol in
general, regardless of the number of processes. After generalization, the existing
Ivy tool is used to check correctness of the invariant. Generalization itself is based
on a number of heuristics that have proven fruitful for some applications, but may
have to be extended for other cases. An extension of the approach with a special
form of predicate abstraction (called syntax-guided abstraction-refinement) and
word-level reasoning is implemented in the AVR tool [32]. This approach enables
the verification of more complex systems, because it can automatically abstract
from the domain complexity that is outside of the considered problem, for exam-
ple by concentrating on control-flow details while abstracting from the processed
data.

A variation of this approach is also implemented in SWISS [33]: instead of
identifying invariants by model checking a small instance of the protocol, the ap-
proach relies on restrictions of the invariant itself. The idea is that, since protocols
are designed by humans that have a correctness argument in mind, their correct-
ness must be provable based on a relatively simple invariant. Therefore, search is
restricted to a well-defined finite set of candidate invariants. The obvious draw-
back is that this restriction may be too strong, and a suitable invariant may not be
found even if it exists.

Handling Faults. While some of the approaches above handle faults explicitly,
most of them do not. If such an approach is used to verify distributed systems,
there are two main ways to obtain correctness guarantees also in the presence of
faults: either by proving that the program, as is, is fault-tolerant, or by making
it fault-tolerant. An example of the first approach uses the regular model check-
ing framework for verifying parameterized systems, together with a formal fault
model, to completely automate verification in the presence of faults [28]. For the
second approach, there exist approaches that use synthesis techniques to automat-
ically modify existing protocols in order to ensure fault-tolerance, for example
implemented in the FTSyn tool [26]]. These tools support different types of faults
and combinations of faults.

S5 A Wish List

From the discussion above, we derive a number of specific challenges of interest
to be tackled. They fall broadly in two categories: understanding clock synchro-
nization under faults or attacks, and suitable tools for their verification. Naturally,
a third crucial challenge is to actually apply these techniques in the context of the

problem areas listed earlier, implementing, verifying, and deploying algorithms in
the wild.

5.1 Open Problems for Synchronization under Faults

Estimating clock offsets in incomplete networks. The most basic ingredient
of clock synchronization algorithms is a subroutine for estimating clock offsets
between the nodes of the network. Between neighbors, this is simply done by
direct communication. If algorithms need to compute such estimates between
non-neighboring nodes, the best (worst-case) accuracy is achieved via communi-
cation along the shortest path with respect to edge weights given by the measure-
ment error induced by communicating along each edge. However, when faults
or corruption of internal nodes or edges on the communication path become a
possibility, redundant use of (node or edge) disjoint paths can increase resilience.
Unfortunately, the additional paths might provide less accurate measurements.
Accordingly, we need to understand how to achieve the best possible tradeoff be-
tween accuracy and resilience. This prompts a large number of specific research
questions:

¢ Given a fixed set of k disjoint paths between two network nodes and a target
resilience f, suppose that for each path we know a worst-case bound on the
accuracy when measuring the offset between the two nodes’ clocks using
this path, provided it is fault-free. What is the best worst-case accuracy that
can be guaranteed when computing an estimate based on taking measure-
ments from all k paths? Is there a strategy that is concurrently optimal for
all values of f? If not, what are the trade-offs? Note that this problem can
be used to model a client seeking to robustly obtain accurate time when
multiple time servers with known communication paths of non-uniform ac-
curacy are available, by introducing a virtual node with perfect clock. A
generalized version considers the setting when not all paths are disjoint.

e Given a network with the above edge weights and a pair of nodes, how to
best select k paths for a given target resilience f? Is there a uniform strategy
that is good for all values of f?

e How do the answers to the above questions change if we consider multiple
pairs of nodes, but allow for estimation to fail for some pairs (possibly as
a function of f) entirely? A particularly important special case is the all-
pairs setting, since this corresponds to simulating a complete network for
the purpose of synchronization. Combining the outcome with analyses of
the resilience of algorithms for complete networks to edge failures could
yield improvements over the state of the art.

e Given a network and a budget for adding edges or nodes, how much can we
improve the suitability of the network for the above tasks? Here, edge cost
may vary depending on the uncertainty that should be guaranteed, this un-
certainty could be a function of the physical network topology, or a mixture
of both.

e Taking this one step further, what happens if we get to design the network
from scratch? Which topologies are most suitable for the above tasks?

Damage mitigation. If faults or an attacker cannot be entirely prevented from
causing a disruption, it is important to limit the impact on the functionality of the
system. This is the underlying philosophy of guaranteeing synchronization at all
non-faulty nodes or all but a small fraction of the non-faulty nodes. However,
there are further options serving this purpose.

One such option that has been neglected in theoretical work on the subject
is to harness the local clocks of nodes more effectively to mitigate the effects of
temporary disruptions. If one (re-)designs algorithms to adjust the computed lo-
cal output clocks only at small rates comparable to their inherent drift from UTC,
even a prolonged attack temporarily compromising a majority of the network has
limited impact on the time at uncompromised nodes. This can dramatically raise
the cost of an attacker trying to achieve a network-wide disruption, and it could
entirely prevent some faults (like the bug from [21]]) from affecting the functional-
ity of the system. Concretely, cesium standards — a type of atomic clock — are off
by no more than a few nanoseconds per day. If an algorithm limits its corrections
to the point where it amplifies this “natural” drift to no more than 10 nanoseconds
per day, an attack would need to be maintained for several months to induce an
error of a single microsecond. In the meantime, the attack can be detected and re-
pelled, without causing any disruption to applications requiring microsecond (or
worse) accuracy that obtain their time from a non-corrupted node.

Next, instead of trying to maintain synchronization at all times, an impor-
tant and well-known complementary approach is to ensure automatic recovery
from disruptions. Taking this approach to the extreme, one may ask for self-
stabilization, i.e., automatic recovery to a consistent system state after arbitrary
transient faults [22]].

If this is too costly or makes the system more vulnerable in other regards,
one might settle for automatic recovery under additional assumptions. For ex-
ample, if the consequences of global system failure are so dramatic that human
intervention will be triggered anyway and the potentially faster recovery due to
self-stabilization provides no relevant advantage, it is justified to assume that the
majority of the nodes remain synchronized. This, in turn, greatly simplifies recov-
ery for nodes that undergo transient faults, as they merely need to resynchronize
to the majority, cf. [45].

A promising candidate assumption is that even after the disruption, the syn-
chronization error with respect to the reference time, say UTC, is bounded by
some value B (which is unknown and possibly much larger than the error bound
under nominal conditions). This is a natural outcome of leveraging local clocks
to mitigate the impact of faults and attacks as described above. We then ask that
the system converges back to nominal synchronization quality as soon as possi-
ble. Note that this results in a very appealing synergy: by bounding the impact of
an attack of duration 7" on synchronization quality by O((¢ — 1)T'), recovery then
might be possible within O((# — 1)T) time, while simultaneously maintaining that
the output clocks drift at rate O(®# — 1) relative to UTC. In other words, in addition
to mitigating the impact of attacks and faults, we get the desirable property that
the output clocks maintain rates that are close to 1 for free!

Gradient clock synchronization. Gradient clock synchronization (GCS) seeks,
in addition to minimizing the worst-case skew between arbitrary pairs of nodes in
the network, to minimize the worst-case skew between network neighbors. The
latter can be kept as small as ®@(ulog D) [53]], where D is the network diameter;
this an exponentially smaller dependence on D than can be achieved for arbitrary
pairs [10]. This makes GCS promising for settings where the skew between neigh-
bors is what really matters. For example, when synchronizing broadcast trans-
mitters or mobile phone cells, the goal is to avoid interference between close-by
cells [21].

Accordingly, reliable GCS synchronization algorithms are of interest. Rather
than requiring to add redundancy to the existing network as suggested in [[16], one
could exploit already existing redundancy in specific networks. For example, if we
consider the power graph of a grid graph, i.e., connecting node (i, j) to all nodes
(@, j') with max{|i’ —i|,|j’ — j|} < 1, it is plausible that a variant of the algorithm
from [S5]] could be devised that tolerates one fault in each neighborhood. If this
is successful, it seems likely that the result can be generalized to similar graphs;
also note that having the above graph as subgraph of the communication network
is sufficient for running such an algorithm.

Moreover, the GCS algorithm from [55] allows us to bound the rate at which
the output clocks can be adjusted by O(# — 1). Therefore, it naturally lends itself
to the damage mitigation mechanism outlined above. However, since the skew
bound between neighbors is comparatively small and network cells will not all be
equipped with cesium standards, the time for responding to an attack is smaller.
Here, it is of interest to consider the following game. Suppose an attacker corrupts
one or a several nodes in order to disrupt synchronization for additional nodes.
Moreover, assume that (non-corrupted) nodes repeatedly and securely report the
clock offsets they observe to their neighbors to a central authority and that the

“To keep in line with the goal of avoiding single points of failure, this “central” authority might

central authority can securely issue the command to logically delete links from the
network. Is there a strategy that the authority can employ to prevent the attacker
from causing disruption on a larger scale? Note that this is a difficult question,
as an attacker could also attempt to coax the central authority into disconnecting
other nodes, and the goal is to minimize the number of impacted nodes. More-
over, it is of interest to consider the same question for mobile attackers, which try
to evade capture while seeking to disrupt synchronization. If there are good solu-
tions to these tasks, one Where feasible, we will try to achieve this gold standard.
can achieve accurate and reliable synchronization between neighbors in practical
settings without adding substantial redundancy to existing networks.

Trusted timestamping. Another area of study are the accuracy and security
guarantees that can be established for a trusted hardware providing a timestamping
service that relates to UTC. Recall that existing solutions offer no such guarantee,
since they do not rely on communication with devices outside of the control of the
attacker. We argue that it is necessary to involve bidirectional communication with
external parties to establish the veracity of any claims about timing. Otherwise,
such an approach is doomed to fail due to an attacker having full control of when
timing information reaches trusted hardware components.

Clearly, this necessitates to rely on cryptographic authentication techniques.
However, this does not necessitate to trust a central server or authority, since time
can be maintained collaboratively. Thus, this task blends in naturally with ques-
tions about secure distributed synchronization primitives.

5.2 Open Problems in Verification of Synchronization
Protocols

As detailed before, there has been a lot of research into the verification of dis-
tributed protocols, including in particular agreement protocols. However, most of
the techniques only support one or two of the three crucial features needed for
the verification of practical clock synchronization protocols (parameterized veri-
fication, faults/attacks, real-time properties). Since the state of the art is rather far
from being able to solve these problems we present, even partial solutions would
be very much appreciated, e.g., proving some of the desired properties. Let us re-
capitulate some promising research directions, and detail the open problems they
are connected to.

Automatic Methods for Clock Synchronization Protocols. There have been
a number of efforts to verify clock synchronization protocols or other distributed
protocols with real-time constraints, but these have been rather limited: As a com-
pletely automatic approach, Spalazzi and Spegni [80] have introduced a method

also be implemented via consensus of several monitors.

for parameterized model checking of gossiping clock synchronization protocols.
This is a good starting point, but their model is limited to a certain form of gos-
siping communication, and has other strong restrictions that make it difficult or
impossible to express practical protocols. Therefore, we believe that research
into stronger fragments that still allow completely automatic forms of verifica-
tion will be a fruitful research direction. Independent dimensions in which these
results can be extended are (i) lifting restrictions within their framework of gos-
siping protocols, (ii) extending their approach to models with other communi-
cation/synchronization primitives, and (iii) extending their approach to support
stronger fault models and (symbolic) cryptographic primitives.

Other Automatic Verification Methods. In addition, there are lots of com-
pletely automatic verification methods that give impressive results for certain
classes of distributed protocols [47, [30], but to the best of our knowledge none
of them supports parameterized verification with real-time constraints and strong
fault models. Moreover, very few of them (e.g. [4]) support complex network
topologies, which we have identified as being necessary for optimal robustness,
security and accuracy in Section Thus, while these techniques are certainly
also worthwhile as a basis for the verification of clock synchronization protocols,
on a superficial level the gap to supporting them is even bigger.

Semi-Automatic Methods. While the completely automatic methods above
strictly need to be extended to handle clock synchronization protocols, the situa-
tion is a bit different with semi-automatic methods: many of them could, at least in
theory, be used as they are to verify real-time constraints under strong fault mod-
els, as long as the user encodes the system and its desired properties in a specific
way, and guides verification according to the capabilities of the underlying veri-
fication method. However, it is not difficult to imagine that this is a sub-optimal
approach that puts most of the burden on the user, and is unlikely to succeed for
any but the smallest examples. Therefore, such approaches also need specialized
extensions to directly support the specification and verification of real-time con-
straints and strong fault models.

For example, in approaches based on TLA* [52, 51]], both strong faults and
real-time constraints can in theory be supported, but making its handling efficient
and making verification scale to interesting protocols (or even implementations)
is a challenging task. We conjecture that the addition of at least some dedicated
support for such features, both in specification and in automated handling of veri-
fication conditions, would already make a large difference.

Verification of Implementations. While there are existing approaches that
can formally verify abstract clock synchronization protocols (under strong re-
strictions), and there are approaches for the verification of implementations of
distributed protocols (instead of high-level algorithms), we are not aware of any
approach that combines both features, verifying actual implementations of clock

synchronization protocols.

Some of the techniques mentioned in Section 4| work directly on implemen-
tations (e.g., in C code), others only verify the properties of a high-level model
that may be implemented in different ways, making it necessary to prove that the
desired properties are maintained by the implementation. Thus, even if we ex-
tend the existing techniques to support real-time properties and strong attackers
or faults, we may have to additionally verify that implementations faithfully real-
ize the respective abstract algorithms and inherit the desired properties. Some of
the semi-automatic techniques support this naturally, for example the “layered”
verification approaches based on TLA*, or the layered refinement in Civl [49]
and Armada [60]. Techniques like that, if extended to support the necessary fea-
tures, could also be used to solve this problem for approaches that only verify the
correctness of high-level algorithms.

For our use case, such approaches might benefit from research in adjacent ar-
eas that face similar problems, like the verification of implementations of security
protocols [7], or of controllers for cyber-physical systems [70, 5]. In particular the
latter area should provide important insights, as their high-level models have real-
valued variables for time and other physical quantities, while implementations are
usually restricted to some finite-precision abstractions of the real numbers. We
face the same problem in implementations of clock synchronization algorithms,
or in other distributed protocols with real-time constraints, for that matter.

References

[1] Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of timed processes
(extended abstract). In TACAS, volume 1384 of Lecture Notes in Computer Science,
pages 298-312. Springer, 1998.

[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Syn-
chronous Byzantine Agreement with Expected O(1) Rounds, Expected O(n?) Com-
munication, and Optimal Resilience. In Financial Cryptography and Data Security
(FC), pages 320-334, 2019.

[3] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.
S-FaaS: Trustworthy and Accountable Function-as-a-Service Using Intel SGX. In
Cloud Computing Security Workshop (CCSW), pages 185-199, 2019.

[4] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of
token-passing systems. In VM CAI, volume 8318 of LNCS, pages 262-281. Springer,
2014.

[5] Adolfo Anta, Rupak Majumdar, Indranil Saha, and Paulo Tabuada. Automatic veri-
fication of control system implementations. In Proceedings of the Tenth ACM Inter-

[6]

[7]

(8]

[9]

[10]

[11]

national Conference on Embedded Software, EMSOFT ’10, page 9—18, New York,
NY, USA, 2010. Association for Computing Machinery.

Fatima M. Anwar, Luis Garcia, Xi Han, and Mani Srivastava. Securing Time in Un-
trusted Operating Systems with TimeSeal. In Real-Time Systems Symposium (RTSS),
pages 80-92, 2019.

Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. Formal verification of security
protocol implementations: a survey. Formal Aspects Comput., 26(1):99-123, 2014.

Chris Baraniuk. UK Radio Disturbance Caused by Satellite Network Bug, 2016.
https://www.bbc.com/news/technology-35463347.

Victor A. Beker. The American Financial Crisis, pages 45-59. Springer Interna-
tional Publishing, 2016.

Saad Biaz and Jennifer L. Welch. Closed Form Bounds for Clock Synchroniza-
tion under Simple Uncertainty Assumptions. Information Processing Letters (IPL),
80(3):151—157, 2001.

Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
and Keith Wansbrough. Engineering with logic: HOL specification and symbolic-
evaluation testing for TCP implementations. In POPL, pages 55-66. ACM, 2006.

The Cost of Blackouts in Europe, 2016. https://cordis.europa.eu/article/
id/126674-the-cost-of-blackouts-in-europe.

Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Hel-
mut Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.

Eric Budish, Peter Cramton, and John Shim. The High-Frequency Trading Arms
Race: Frequent Batch Auctions as a Market Design Response. The Quarterly Jour-
nal of Economics (Q J Econ), 130(4):1547-1621, 2015.

Eric Budish, Robin S. Lee, and John J. Shim. A Theory of Stock Exchange Compe-
tition and Innovation: Will the Market Fix the Market? SSRN, 2019.

Johannes Bund, Christoph Lenzen, and Will Rosenbaum. Fault Tolerant Gradi-
ent Clock Synchronization. In Symposium on Principles of Distributed Computing
(PODC), pages 357-365, 2019.

Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise. MCMT in the land of
parametrized timed automata. In VERIFY@IJCAR, volume 3 of EPiC Series in
Computing, pages 47-64. EasyChair, 2010.

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. The tla*
proof system: Building a heterogeneous verification platform. In ICTAC, volume
6255 of Lecture Notes in Computer Science, page 44. Springer, 2010.

Sylvain Conchon and Mattias Roux. Reasoning about universal cubes in MCMT.
In ICFEM, volume 11852 of Lecture Notes in Computer Science, pages 270-285.
Springer, 2019.

https://www.bbc.com/news/technology-35463347
https://cordis.europa.eu/article/id/126674-the-cost-of-blackouts-in-europe
https://cordis.europa.eu/article/id/126674-the-cost-of-blackouts-in-europe

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts,
and Herndn Vanzetto. TLA + proofs. In FM, volume 7436 of Lecture Notes in
Computer Science, pages 147—-154. Springer, 2012.

Magnus Danielson. GPS Incident on Broadcast Networks. Technical report, U.S.
Civil GPS Service Interface Committee (CGSIC), 2016. https://rubidium.se/
~magnus/papers/GPSincidentA6.pdf.

Edsger W. Dijkstra. Self-Stabilizing Systems in Spite of Distributed Control. Com-
munications of the ACM, 17(11):643-644, 1974.

Danny Dolev, Matthias Fiigger, Christoph Lenzen, Martin Perner, and Ulrich
Schmid. HEX: Scaling Honeycombs is Easier than Scaling Clock Trees. Journal of
Computer and System Sciences (JCSS), 82(5):929-956, 2016.

Danny Dolev, Joe Halpern, and H. Raymond Strong. On the Possibility and Impossi-
bility of Achieving Clock Synchronization. In Symposium on Theory of Computing
(STOC), pages 504-511, 1984.

Stephen Dominiak and Ulrich Dersch. Precise Time Synchronization of Phasor
Measurement Units with Broadband Power Line Communications. Technical report,
Swiss Federal Office of Energy SFOE, 2017.

Ali Ebnenasir, Sandeep S. Kulkarni, and Anish Arora. Ftsyn: a framework for au-
tomatic synthesis of fault-tolerance. Int. J. Softw. Tools Technol. Transf., 10(5):455—
471, 2008.

J.W. Feltes and Carlos Grande-Moran. Black Start Studies for System Restoration.
In Power and Energy Society General Meeting - Conversion and Delivery of Elec-
trical Energy in the 21st Century, pages 1-8, 2008.

Dana Fisman, Orna Kupferman, and Yoad Lustig. On verifying fault tolerance of
distributed protocols. In TACAS, volume 4963 of Lecture Notes in Computer Sci-
ence, pages 315-331. Springer, 2008.

Marc Frei, Jonghoon Kwon, Seyedali Tabaeiaghdaei, Marc Wyss, Christoph Lenzen,
and Adrian Perrig. G-SINC: Global Synchronization Infrastructure for Network
Clocks, 2022.

Silvio Ghilardi and Silvio Ranise. MCMT: A model checker modulo theories. In
IJCAR, volume 6173 of Lecture Notes in Computer Science, pages 22-29. Springer,
2010.

Peter Glatzel. Timewarp DCF77-Testgenerator. Elrad, 2:88-91, 1996.

Aman Goel and Karem A. Sakallah. AVR: abstractly verifying reachability. In
TACAS (1), volume 12078 of Lecture Notes in Computer Science, pages 413-422.
Springer, 2020.

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding invariants of
distributed systems: It’s a small (enough) world after all. In NSDI, pages 115-131.
USENIX Association, 2021.

https://rubidium.se/~magnus/papers/GPSincidentA6.pdf
https://rubidium.se/~magnus/papers/GPSincidentA6.pdf

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving safety
and liveness of practical distributed systems. Commun. ACM, 60(7):83-92, 2017.

Internet Engineering Task Force (IETF). Network Time Protocol Version 4: Proto-
col and Algorithms Specification, 2010. https://datatracker.ietf.org/doc/
html/rfc5905.

Internet Engineering Task Force (IETF). Message Authentication Code for the
Network Time Protocol, 2019. https://datatracker.ietf.org/doc/html/
rfc8573.

Nouraldin Jaber, Swen Jacobs, Christopher Wagner, Milind Kulkarni, and Roopsha
Samanta. Parameterized verification of systems with global synchronization and
guards. In CAV (1), volume 12224 of Lecture Notes in Computer Science, pages
299-323. Springer, 2020.

Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roop-
sha Samanta. Quicksilver: modeling and parameterized verification for distributed
agreement-based systems. Proc. ACM Program. Lang., 5(OOPSLA):1-31, 2021.

Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press,
2006.

Swen Jacobs, Mouhammad Sakr, and Martin Zimmermann. Promptness and
bounded fairness in concurrent and parameterized systems. In VMCAI, volume
11990 of Lecture Notes in Computer Science, pages 337-359. Springer, 2020.

Philipp Jeitner, Haya Shulman, and Michael Waidner. The Impact of DNS Insecurity
on Time. In Conference on Dependable Systems and Networks (DSN), pages 266—
277, 2020.

Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing Byzantine Clock
Synchronization with Optimal Precision. Theory of Computing Systems (TOCS),
63(2):261-305, 2019.

Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin
Vahdat. Mace: language support for building distributed systems. In PLDI, pages
179-188. ACM, 2007.

Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life,
death, and the critical transition: Finding liveness bugs in systems code (awarded
best paper). In NSDI. USENIX, 2007.

Attila Kinali, Florian Huemer, and Christoph Lenzen. Fault-tolerant Clock Synchro-
nization with High Precision. In Symposium on VLSI (ISVLSI), 2016.

Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ model checking made
symbolic. Proc. ACM Program. Lang., 3(OOPSLA):123:1-123:30, 2019.

Igor Konnov and Josef Widder. Bymc: Byzantine model checker. In ISoLA (3),
volume 11246 of Lecture Notes in Computer Science, pages 327-342. Springer,
2018.

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc8573
https://datatracker.ietf.org/doc/html/rfc8573

[48]

Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. A short coun-
terexample property for safety and liveness verification of fault-tolerant distributed
algorithms. In POPL, pages 719-734. ACM, 2017.

Bernhard Kragl and Shaz Qadeer. Layered concurrent programs. In CAV (1), volume
10981 of Lecture Notes in Computer Science, pages 79—102. Springer, 2018.

Bernhard Kragl and Shaz Qadeer. The civl verifier. In FMCAD, pages 143-152.
IEEE, 2021.

Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+ toolbox.
In F-IDE@FM, volume 310 of EPTCS, pages 50-62, 2019.

Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872-923, 1994.

Leslie Lamport. Real-time model checking is really simple. In CHARME, volume
3725 of Lecture Notes in Computer Science, pages 162—175. Springer, 2005.

Christoph ~ Lenzen. Clock Synchronization and Adversar-
ial Fault Tolerance, 2021. https://www.mpi-inf.mpg.de/
departments/algorithms-complexity/teaching/summer21/
clock-synchronization-and-adversarial-fault-tolerance.

Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight Bounds for Clock
Synchronization. Journal of the ACM (JACM), 57(2), 2010.

Christoph Lenzen and Julian Loss. Optimal Clock Synchronization with Signatures.
CoRR, abs/2203.02553, 2022.

Christoph Lenzen and Joel Rybicki. Near-Optimal Self-Stabilising Counting and
Firing Squads. Distributed Computing (DC), 32(4):339-360, 2019.

Christoph Lenzen and Joel Rybicki. Self-Stabilising Byzantine Clock Synchroni-
sation Is Almost as Easy as Consensus. Journal of the ACM (JACM), 66(5):32:1—
32:56, 2019.

Yao Liu, Peng Ning, and Michael K. Reiter. False Data Injection Attacks against
State Estimation in Electric Power Grids. Transactions on Information and System
Security, 14(1), 2011.

Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upa-
manyu Sharma, James R. Wilcox, and Xueyuan Zhao. Armada: low-effort verifi-
cation of high-performance concurrent programs. In PLDI, pages 197-210. ACM,
2020.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikeci,
and Karem A. Sakallah. I4: incremental inference of inductive invariants for verifi-
cation of distributed protocols. In SOSP, pages 370-384. ACM, 2019.

Kenneth L. McMillan and Oded Padon. Ivy: A multi-modal verification tool for
distributed algorithms. In CAV (2), volume 12225 of Lecture Notes in Computer
Science, pages 190-202. Springer, 2020.

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer21/clock-synchronization-and-adversarial-fault-tolerance
https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer21/clock-synchronization-and-adversarial-fault-tolerance
https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer21/clock-synchronization-and-adversarial-fault-tolerance

Stephan Merz and Herndn Vanzetto. Automatic verification of TLA + proof obli-
gations with SMT solvers. In LPAR, volume 7180 of Lecture Notes in Computer
Science, pages 289-303. Springer, 2012.

Mifid 1, 2018. https://www.esma.europa.eu/policy-rules/
mifid-ii-and-mifir.

David L. Mills. Network Time Protocol (NTP), 1985. https://www.hjp.at/
(st_a)/doc/rfc/rfc958.html.

Lakshay Narula and Todd E. Humphreys. Requirements for Secure Clock Synchro-
nization. IEEE Journal of Selected Topics in Signal Processing (JSTSP), 12(4):749—
762, 2018.

Chris Newcombe. Why amazon chose TLA +. In ABZ, volume 8477 of Lecture
Notes in Computer Science, pages 25-39. Springer, 2014.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. How amazon web services uses formal methods. Commun.
ACM, 58(4):66-73, 2015.

Karen O’Donoghue, Dieter Sibold, and Steffen Fries. New Security Mechanisms
for Network Time Synchronization Protocols. In Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication (ISPCS), pages 1—
6, 2017.

Junkil Park, Miroslav Pajic, Oleg Sokolsky, and Insup Lee. Automatic verification of
finite precision implementations of linear controllers. In TACAS (1), volume 10205
of Lecture Notes in Computer Science, pages 153-169, 2017.

IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems, 2020. IEEE Std 1588-2019 (Revision of IEEE Std
1588-2008).

Tom Ridge. Verifying distributed systems: the operational approach. In POPL,
pages 429-440. ACM, 2009.

Alan H. Sanstad, Qianru Zhu, Benjamin Leibowicz, Peter H. Larsen, and Joseph H.
Eto. Case Studies of the Economic Impacts of Power Interruptions and Damage to
Electricity System Infrastructure from Extreme Events. Technical report, Berkeley
Lab, 2020.

Neta Rozen Schiff, Michael Schapira, Danny Dolev, and Omer Deutsch. Preventing
(Network) Time Travel with Chronos. In Applied Networking Research Workshop
(ANRW), pages 17-31, 2018.

Michael Schmidthaler and Johannes Reichl. Assessing the Socio-economic Effects
of Power Outages ad hoc. Computer Science - Research and Development, 31:157—
161, 2016.

Fred B. Schneider. Technical perspective: Ironfleet simplifies proving safety and
liveness properties. Commun. ACM, 60(7):82, 2017.

https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://www.hjp.at/(st_a)/doc/rfc/rfc958.html
https://www.hjp.at/(st_a)/doc/rfc/rfc958.html

[82]

[83]

Detlef Schwier and Friedrich W. von Henke. Mechanical verification of clock syn-
chronization algorithms. In FTRTFT, volume 1486 of Lecture Notes in Computer
Science, pages 262-271. Springer, 1998.

M. Sforna and M. Delfanti. Overview of the Events and Causes of the 2003 Italian
Blackout. In Power Systems Conference and Exposition (PSCE), pages 301-308,
2006.

Konrad Slind and Michael Norrish. A brief overview of HOL4. In TPHOLSs, volume
5170 of Lecture Notes in Computer Science, pages 28-32. Springer, 2008.

Luca Spalazzi and Francesco Spegni. Parameterized model checking of networks of
timed automata with boolean guards. Theor. Comput. Sci., 813:248-269, 2020.

Chih-Che Sun, Adam Hahn, and Chen-Ching Liu. Cyber Security of a Power
Grid: State-of-the-art. International Journal of Electrical Power & Energy Systems,
99:45-56, 2018.

Nils Ole Tippenhauer, Christina Popper, Kasper Bonne Rasmussen, and Srdjan Cap-
kun. On the Requirements for Successful GPS Spoofing Attacks. In Conference on
Computer and Communications Security (CCS), pages 75-86, 2011.

TPM Working Group. Trusted Platform Module Library Specification - Part
1: Architecture, 2019. https://trustedcomputinggroup.org/wp-content/
uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf.

Jennifer L. Welch and Nancy A. Lynch. A New Fault-Tolerant Algorithm for Clock
Synchronization. Information and Computation (Inf Comput), 77(1):1-36, 1988.

Duncan Wigan. Case Study: The Cum-Cum and Cum-Ex Schemes. Technical
Report D4.5, Copenhagen Business School, 2019.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. Verdi: a framework for implement-
ing and formally verifying distributed systems. In PLDI, pages 357-368. ACM,
2015.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIST: transparent model
checking of unmodified distributed systems. In NSDI, pages 213-228. USENIX
Association, 2009.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla* specifi-
cations. In CHARME, volume 1703 of Lecture Notes in Computer Science, pages
54-66. Springer, 1999.

https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf

	The Task
	Why Do Faults and Attacks Matter?
	The Power Grid
	Cellular and Broadcast Networks
	Synchronization via the Internet
	Financial Sector

	State of the Art
	Estimating Clock Offsets in Networks
	Algorithms for Incomplete Networks
	Single Points of Failure in Deployed Systems

	Does it Actually Work?
	A Wish List
	Open Problems for Synchronization under Faults
	Open Problems in Verification of Synchronization Protocols

