
The Logic in Computer Science Column
by

Yuri Gurevich

Computer Science & Engineering
University of Michigan, Ann Arbor, Michigan, USA

gurevich@umich.edu

A Surprising Relationship Between
Descriptive Complexity
and Proof Complexity

Yijia Chen
Shanghai Jiao Tong University

Department of Computer Science
yijia.chen@cs.sjtu.edu.cn

Jörg Flum
Albert-Ludwigs-Universität Freiburg i. Br

Mathematisches Institut
joerg.flum@math.uni-freiburg.de

Moritz Müller
Universität Passau

Fakultät für Informatik und Mathematik
moritz.mueller@uni-passau.de

In [4] Gurevich conjectured that there is no logic that captures PTIME. This
is the main open problem of descriptive complexity. A central issue in proof
complexity is whether p-optimal proof systems for the set TAUT of tautologies of
propositional logic exist. It appears explicitly in [5] and implicitly already in the
foundational paper of Cook and Reckow [3].

Around ten years ago Chen and Flum [1] showed that these two problems are
tightly related: there is a p-optimal proof system for TAUT if and only if a cer-
tain logic considered by Gurevich in [4] captures PTIME. How surprising is this
equivalence? It turns out that both statements are equivalent to the membership
of a parameterized halting problem for Turing machines in a certain complexity
class of parameterized complexity theory [2].

The purpose of this note is to present a short direct proof of (a variant of) the
mentioned equivalence. It is intended to be accessible to non-experts. We follow
the established style of this column and present the proof in dialogue form.

yijia.chen@cs.sjtu.edu.cn
joerg.flum@math.uni-freiburg.de
moritz.mueller@uni-passau.de

Professor Gurevich G talks to one of his students SG.
SG: You conjecture that there is no logic capturing PTIME. What is the underlying
notion of a logic here?
G: Roughly speaking a logic is given by a map L and a binary relation |=L. The
map L assigns to every vocabulary τ, i.e., to every finite set of relation symbols,
a set L[τ] of strings, the so-called τ-sentences of L. If A |=L ϕ, then A is a finite
τ-structure and ϕ a τ-sentence of L. The map and the relation have to satisfy some
natural properties, which I will explain if necessary. A sentence ϕ ∈ L[τ] defines
the class ModL(ϕ) of τ-structuresA such thatA |=L ϕ.
SG: What does it mean that a logic captures PTIME?
G: For some vocabulary τ we view all instances of a given (computational) prob-
lem as τ-structures. We identify the problem with the class of its yes-instances.
A logic captures PTIME if and only if its sentences define precisely the (classes
of yes-instances of) problems in PTIME. Again some additional properties are
required, which I will explain if necessary.
SG: Consider the logic L1 where, for any τ, L1[τ] is the set of polynomial time
clocked algorithms (i.e., each algorithm comes with an explicit polynomial time
bound). For such an algorithm A and any τ-structure declare A |=L1 A to mean
that A acceptsA. Why does this logic not capture PTIME?
G: Because of an additional property required of a logic: ModL(ϕ) has to be closed
under isomorphism for any sentence ϕ. A polynomial time algorithm might reject
(the binary encoding of) some structure but accept (the binary encoding of) an
isomorphic one.
SG: OK, then consider the logic L2 where L2[τ] for any τ is the set of polynomial
time algorithms A that are invariant: ifA and B are isomorphic τ-structures, then
A acceptsA if and only if A accepts B. Define |=L2 as for L1. Why does this logic
not capture PTIME?
G: Because of a further additional property required of a logic: for every τ, the
set L[τ] has to be decidable. But it is undecidable whether a clocked polynomial
time algorithm is invariant.
SG: A further attempt with the logic L3. Let L3[τ] := L1[τ] but now defineA |=L3

A to mean that A accepts A and A is invariant. For non-invariant A we have
ModL3(A) = ∅. Why does this logic not capture PTIME?
G: Because of an extra condition in what it means that a logic L captures PTIME:
we require that for each τ there exists a model-checker, i.e., an algorithm that,
given a τ-structure A and ϕ ∈ L[τ], decides whether A |=L ϕ. Such an algorithm
does not exist for L3.
SG: My last attempt. Set L4[τ] := L1[τ] and define A |=L4 A to mean that A
acceptsA and A is n-invariant where n is the size of the universe ofA. That A is

n-invariant means: ifA and B are isomorphic τ-structures of size at most n, then
A acceptsA if and only if A accepts B. Why does this logic not capture PTIME?
G: Well, we do not know whether L4 captures PTIME. More precisely, we do not
know whether L4 satisfies a final condition on a logic L capturing PTIME. This
condition requires that for each fixed ϕ, the model-checker runs in polynomial
time when restricted to inputs (A, ϕ).
SG: Where does this requirement come from?
G: Intuitively, it allows to view a logic capturing PTIME as a high level program-
ming language for PTIME. More precisely, every ϕ in the logic is viewed as a
program, and the model-checker is an interpreter which executes this program on
any structureA in time polynomial in the size ofA. In addition, for every PTIME
problem we can write such a program ϕ.
SG: To sum up, a logic capturing PTIME consists of a map L from vocabularies τ
to sets L[τ] of τ-sentences, a relation |=L between τ-structures and τ-sentences,
and a model-checker, an algorithm that given a τ-structureA and ϕ ∈ L[τ] decides
whetherA |=L ϕ, such that for every τ

– the set L[τ] is decidable;

– for every ϕ ∈ L[τ], the class ModL(ϕ) = {A | A |=L ϕ} is closed under
isomorphism;

– every problem in PTIME, if viewed as a class of τ-structures, equals
ModL(ϕ) for some ϕ ∈ L[τ];

– for every fixed ϕ ∈ L[τ], the runtime of the model-checker on (A, ϕ) is
polynomial in the size ofA.

G: Yes, this is how the question whether there exists a logic capturing PTIME is
formulated in [4]. Your naive logic L4 satisfies the first three items but I conjecture
it does not satisfy the last one.
SG: It would be sufficient to have an algorithm that given (A, n) decides whether
A is n-invariant in time pA(n) where pA is a polynomial that may depend on A.
G: In fact, this is also necessary for L4 capturing PTIME: let ¬A behave as A but
flip the answer, i.e., ¬A accepts if and only if A rejects. To decide whether A is
n-invariant, take some arbitrary structure A of size n and use the model-checker
to check whetherA |=L4 A orA |=L4 ¬A.

Professor Cook C talks to one of his students SC.
SC: Some conjecture that there is no p-optimal proof system for the set TAUT of
tautologies of propositional logic. What does this mean, and, in particular, what
is the underlying notion of a proof system here?

C: A proof system is a polynomial time computable function P from the set of
binary strings onto TAUT. A binary string x is a P-proof of the tautology P(x).
Being p-optimal means that for every other proof system P′ there is a polyno-
mial time computable function T translating P′-proofs into P-proofs of the same
tautologies, i.e., such that P′(x) = P(T (x)) for all binary strings x.
SC: Define the proof system P0 as follows. On input (P, x, 1t) where P is (an algo-
rithm computing a) a proof system, x is a binary string, and t ∈ N, simulate P on x
for at most t many steps; if the simulation halts, return its output P(x); otherwise,
return some fixed tautology, say (X ∨¬X); also return (X ∨¬X) on inputs that are
not of the required form. This is a map onto TAUT. If P is a proof system and p is
a polynomial bound for its running time, then x 7→ (P, x, 1p(|x|)) is a translation as
required. Why isn’t P0 a p-optimal proof system?
C: Because it is not decidable whether a given polynomial time algorithm is a
proof system.
SC: Well, then we define P1 as P0 but now we consider inputs (A, x, 1t) where
A is an arbitrary (clocked) polynomial time algorithm. On such an input, P1 first
spends t steps to check whether A is |x|-sound before simulating it and proceeding
as P0. That A is n-sound means: A(y) is a tautology for all y with |y| 6 n. If the
check fails or P1 runs out of time, then it outputs (X ∨ ¬X).
C: It is unknown whether your naive proof system P1 is p-optimal. Your trans-
lation x 7→ (A, x, 1p(|x|)) needs a polynomial p(|x|) so that the simulation and the
|x|-soundness check can be done in time p(|x|).
SC: It would be sufficient to have an algorithm that given (A, n) decides whetherA
is n-sound in time pA(n) for some polynomial pA that may depend on A.

The two students SG and SC meet, SC asks SG for her interests, and SG
recounts her conversation with G.
SC: After listening to you I believe that the existence of a p-optimal proof system
implies that the naive logic L4 is a logic for PTIME.
SG: Why?
SC: Assume there is a p-optimal proof system P. By a classical result of Levin [6],
P has an optimal inverter I. Being an inverter means that I, given a tautology,
outputs a P-proof of it; on other inputs I diverges. Being optimal means: for
every inverter I′ there is a polynomial p′ such that tI(x) 6 p′(tI′(x) + |x|) for every
tautology x. Here, tI(x) and tI′(x) denote the runtimes of I and I′ on x.

For (A, n), where A is a polynomial time algorithm and n > 1, to decide
whether A is n-invariant is a problem in coNP (the complement is in NP!). By
coNP-completeness of TAUT, there is a polynomial time function assigning to
(A, n) a propositional formula Fn

A such that Fn
A is a tautology if and only if A is

n-invariant.

Let A be invariant. Then all Fn
A are tautologies. One easily defines a proof

system P′ that has 1n as a P′-proof of Fn
A. By p-optimality of the proof system

P there is a translation T , i.e., P′ = P ◦ T . Define an inverter I′ of P that maps
Fn
A to T (1n) – we can assume that one can recover n from Fn

A in polynomial time.
By optimality of the inverter I of P, also I on Fn

A needs time pA(n) for some
polynomial pA.

SG: But runtime pA(n) is ensured only on inputs (A, n) where A is invariant. On
other inputs (I and) your algorithm might even diverge.

SC: Right. So run the algorithm in parallel with some brute force procedure that
on (A, n) computes the minimal m such that A is not m-invariant; for invariant A
this procedure does not halt. Otherwise it halts in some time depending only onA.
If it halts, check n < m. Then the runtime on inputs (A, n) with non-invariant A is
also bounded as desired.

SG: I’m impressed. Now we know: if p-optimal proof systems exist, then my
naive logic captures PTIME.

SG asks SC for her interests, and SC recounts her conversation with C.

SG: After listening to you I believe that if my naive logic captures PTIME, then
your naive proof system is p-optimal.

SC: Why?

SG: So far we used formulations like “an algorithm accepts a structure.” But
what does it mean that an abstract structure is an input to an algorithm? Now we
have to be more precise. We use binary codes of structures. For this purpose we
assume that we deal with standard structures, the universe of a standard structure
is the set [n] (:= {1, 2, . . . , n}) for some n > 1. Of course, every abstract structure
is isomorphic to a standard structure. Then, once we have fixed an ordering on
the relations of a vocabulary τ, every standard τ-structure corresponds to a unique
binary string. To apply the algorithm to the structure means that this string is the
input to the algorithm.

So let’s come back to our problem. Let τ := {<,One,Zero} with binary <
and unary One and Zero. For a binary string x = x1 . . . x|x| and a natural number
m > |x| let the τ-structure A(x,m) have universe [2m], interpret < by the natural
order on [2m], One by {i | xi = 1}, and Zero by {i | xi = 0}. Given a (standard)
τ-structure B, one can check in polynomial time whether B is isomorphic to some
A(x,m), and in the positive case compute the unique such pair (x,m). Such a B
codes an assignment αB to m propositional variables: assign true or false to the
j-th variable depending on whether 2 j − 1 is smaller than 2 j in the order <B, the
interpretation of < in B. Clearly, every assignment to m variables is coded by
some B � A(x,m).

SC: What does this help to reduce my soundness problem to your invariance prob-
lem?

SG: Let A be a polynomial time algorithm and without loss of generality assume
that on any input it always outputs a propositional formula. Furthermore let qA be
a strictly increasing polynomial such that qA(n) is an upper bound for the number
of variables of A(x) for all x with |x| 6 n.

Define A∗ to check, given a standard τ-structure B, whether it is isomorphic
to some A(x, qA(|x|) + 1). If not A∗ rejects B; otherwise, it computes A(x) which
we have assumed to be a propositional formula. Let X be the “first” variable not
occurring in A(x). Then the formula (A(x) ∨ X) is satisfiable and

(
(A(x) ∨ X) is

a tautology if and only if A(x) is a tautology
)
. The algorithm A∗ accepts B if αB

satisfies (A(x) ∨ X) and otherwise rejects B.
Then A is n-sound if and only if A∗ is 2(qA(n) + 1)-invariant.

SC: Why?

SG: IfA is not n-sound, someA(x) with |x| 6 n is not a tautology. Then (A(x)∨X)
is not a tautology but satisfiable. Choose a satisfying and a falsifying assignment
for (A(x)∨X). There are two structures B1 and B2 isomorphic toA(x, qA(|x|) + 1)
such that αB1 and αB2 are these assignments. Then A∗ accepts B1 but rejects B2.
Thus A∗ is not 2(qA(|x|) + 1)-invariant and hence not 2(qA(n) + 1)-invariant.

Now assume that A is n-sound. Assume A∗ accepts a size 6 2(qA(n) + 1)
structureB. ThenB � A(x, qA(|x|)+1) for some |x| 6 n. Conversely, every suchB
has size at most 2(qA(n) + 1) and is accepted by A∗ if αB satisfies (A(x) ∨ X). By
n-soundness of A, the formula (A(x)∨X) is a tautology and in particular, satisfied
by αB.

SC: To sum up, we proved:

Theorem. Statements (2), (3) and (4) are equivalent and they imply (1).

(1) There is a logic capturing PTIME.

(2) The naive logic captures PTIME.

(3) The naive proof system is p-optimal.

(4) There is a p-optimal proof system.

The students ask around whether (1) is equivalent to some natural weakening
of (4) but nobody seems to know anything.

Acknowledgement We thank Albert Atserias and anonymous reviewers for
comments on an earlier version of this text.

References
[1] Yijia Chen and Jörg Flum. From almost optimal algorithms to logics for complexity

classes via listings and a halting problem. Journal of the ACM, 59(4):17:1–17:34,
2012.

[2] Yijia Chen and Jörg Flum. A parameterized halting problem. In Hans L. Bodlaender,
Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorith-
mic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occa-
sion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages
364–397. Springer, 2012.

[3] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

[4] Yuri Gurevich. Logic and the challenge of computer science. In Egon Börger, edi-
tor, Current Trends in Theoretical Computer Science, pages 1–57. Computer Science
Press, 1988.

[5] Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of
first order theories and the complexity of computations. Journal of Symbolic Logic,
54(3):1063–1079, 1989.

[6] Leonid A. Levin. Universal sequential search problems. Problems of Information
Transmission, 9(3):265–266, 1973.

