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This month, the Distributed Computing Column is featuring Naama Ben-
David, winner of the 2022 Principles of Distributed Computing Doctoral Dis-
sertation Award. Her work on concurrent systems both builds critical theoretical
foundations, while also addressing practical concerns of real-world systems. Un-
derlying much of her work is a focus on performance: how do we design real
concurrent systems that scale better and run faster? Within that context, Naama
Ben-David has addressed a wide variety of important questions, such as the use
of RDMA (remote direct memory access) memory, the impact of NVRAM (non-
volatile random access memories), and how to design high-performance Byzan-
tine agreement.

In this column, Naama Ben-David revisits the idea of “lock-free locks,” an
approach to concurrency that realizes many of the benefits of both lock-based
and lock-free algorithms. Lock-free locks provide the same guarantee to a pro-
grammer as a typical blocking lock, while at the same time allowing for stronger
progress guarantees, e.g., lock-freedom and wait-freedom. (This seemingly im-
possible combination is made possible by requiring that the critical section have
the property of “idempotence,” meaning that it can safely be executed more than
once.)

Naame Ben-David gives an overview of the state-of-the-art for lock-free locks,
and discusses several interesting open questions that remain. It is clear both that
the approach is quite promising, and at the same time there is much work left to
do!

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.



Lock-Free Locks

Naama Ben-David
(VMware Research)

1 Locks
Modern systems make use of multiple processes to speed up tasks that can be
parallelized. However, inevitably, when multiple processes run simultaneously
in the same system and are accessing the same resources, they sometimes need
to synchronize. More specifically, on modern multicore architectures, processes
must coordinate accesses to the same shared memory to avoid overwriting each
other’s work and causing inconsistencies. This is the main challenge addressed
in the study of concurrent programs; how do we ensure safe coordination among
processes?

Perhaps the most common way to do this is through the use of locks. A lock
is a primitive that protects a prespecified section of memory, and allows only one
process to access that memory at a time. This allows processes to safely modify
that memory without worrying about potential interference from other processes.
The problem solved by locks is called mutual exclusion, first introduced by Di-
jkstra [19, 20]. In its simplest form, mutual exclusion specifies three sections of
code that a process might be in; the entry section, the critical section, and the
exit section. Intuitively, processes in the entry section are competing to acquire
the lock, a process in the critical section is holding the lock, and processes in the
exit section have just released the lock. Mutual exclusion guarantees that at any
point in time, at most one process can be in the critical section, and that if there
are processes in the entry section, eventually there will be a process in the critical
section.

Since its introduction in the 1960s, the mutual exclusion problem has unsur-
prisingly garnered a lot of attention, with a lot of research into how to design
mutual exclusion algorithms with better guarantees [36, 46], and fitting the re-
quirements of new architectures [14, 18, 26, 32, 33], as well as several surveys on
the topic [13, 45].

Use of locks in practice. Locks are used in many practical systems, including
transactional systems [50], file systems [31], databases [16], and concurrent data



structures [8] to allow for increased parallelism without risking the safety of pro-
gram logic. When designing a system or data structure using locks, an important
decision must be made: at what granularity should the locks be used? In other
words, how much memory should a single lock protect? This decision exposes
a difficult tradeoff; it is simplest to write code when locks are coarse grained,
meaning that each lock protects a large portion of the application’s memory, since
this usually means that only one lock must be acquired per operation. However,
the more memory a single lock protects, the more likely it is that other processes
will contend on that lock, therefore causing more sequential bottlenecks. Often,
systems opt to use locks in a fine-grained manner. That is, rather than having a
single global lock that protects the entire system, many locks are defined, pro-
tecting small pieces of memory. For example, in many transactional systems, one
lock is assigned per data item [35,50,52]. This means that when executing a trans-
action on several data items at a time, the locks for all of them must be acquired
before any change is made on any of the memory.

Downside of locks. While locks provide a simple abstraction for safely syn-
chronizing concurrent processes, they suffer from a major drawback: when one
process holds the lock, it blocks all others from accessing the memory that the
lock protects. This may sound inevitable, since after all, preventing concurrent
execution on that piece of memory is the goal. However, the manner in which
it is done can in fact be quite problematic in practice, because for many different
reasons, processes in a system often operate at very different speeds. For example,
a process may be scheduled out by the system for a long period of time, during
which it does not execute any code for the program, while others continue their
execution. Another reason for stalling is caching issues, or architectural features
that place some processes further away from parts of the memory than others.
With all of these factors coming into play, bottlenecks can often form when a
slow process is holding and not releasing a lock. This is especially when there is
high contention, since then many other processes are waiting for this process to
finish, causing a lot of wasted CPU cycles.

2 Lock-Freedom
Lock-free algorithms avoid this drawback of locks; they guarantee that progress is
made in the system even if some process fails or stalls for an arbitrarily long time.
Lock-free algorithms achieve this by carefully reasoning about the semantics of a
program or data structure, and designing algorithms that can use just small atomic
primitives that are provided by the hardware, like compare-and-swap (CAS), to
synchronize processes. Lock-free data algorithms have been the topic of extensive



study, and many efficient lock-free data structures have been designed, including
BSTs [9,11,21,43], queues [34,41,42], hash tables [40,44,48], priority queues [2,
7, 37, 49, 55], and linked-lists [28, 47]. However, lock-freedom comes at the cost
of increased programming effort; the elegant abstraction that locks provide, which
allows programmers to write sequential code and be guaranteed that it will be safe
in a concurrent setting is no longer available.1

Various research efforts have been made to ease the design and implementa-
tion of lock-free programs. One approach has been to observe that many lock-free
algorithms have a similar structure, and exploit that structure to extend and op-
timize many lock-free programs in a general way. For example, this was done
in the definition of the normalized form of lock-free data structures [51], which
was then used in several works to add useful properties to any normalized data
structure [5, 15, 51]. In a similar vein, recent works have shown how to add range
queries to a large class of lock-free search data structures [54], and how to make
a different class of lock-free tree data structures persistent in an efficient man-
ner [24]. Another approach to ease the design of lock-free algorithms has been to
present helpful primitives that can be used instead of just individual word-sized
CASes. For example, some work has introduced lock-free ways to extend CAS to
affect two words at a time [25], or several words at a time [23,27,29,38]. Similar
primitives have also been introduced with a focus on making commonly recurring
constructs in lock-free data structures simpler to implement [10, 12].

3 Lock-Free Locks: Best of Both Worlds?
So far, we discussed two approaches to synchronizing concurrent processes; locks,
which are easy to use but can cause processes to block others from making progress,
and lock-freedom, which does not block, but requires careful design and is diffi-
cult to generalize. We briefly surveyed a few efforts to make lock-free code easier
to program through the design of useful lock-free primitives.

Lock-free locks offer an abstraction that achieves the best of both worlds, and
can perhaps be seen as the most general extension of the above-mentioned trend of
presenting easy-to-use lock-free primitives. More precisely, lock-free locks give
the same interface and safety guarantee as a regular blocking lock (namely, that at
any given time, at most one process holds the lock and that process can execute a
critical section of code atomically on the protected memory), but provide a lock-
free progress guarantee. At a high level, this is achieved by having a process
holding a lock leave a descriptor of its critical section for others to see. Other

1While there are some universal constructions that can be used to generate general-purpose
lock-free data structures [1,22,30], these constructions sequentialize all accesses to the data struc-
ture, and are thus inefficient.



processes contending on a lock then execute the critical section of the current lock
holder. Once this is done, the contending processes can safely release the lock
from the ownership of the previous process and take it for themselves.

However, this must be done carefully, since having several processes poten-
tially execute the same code simultaneously may result in that code having a dif-
ferent effect than intended, thereby breaking safety guarantees. Thus, for lock-free
locks to work, the critical section that is run must be idempotent, i.e. it must have
the same effect whether it is run just once or several times concurrently.

Origins of Lock-Free Locks. The idea of lock-free locks was first introduced
in the 1990s by Barnes [3] and independently by Turek et al [53]. Both papers
present similar ways of taking a fairly general class of code and converting it to be
idempotent, thereby allowing lock-free locks to be used for any critical sections
that fall within that class. However, the idempotent constructions presented in
these early works required inefficient mechanisms that made them impractical. In
particular, these papers achieved idempotence through a context-saving approach,
in which after every instruction in the critical section, the entire context of the
program (including program counters and registers) must be saved to allow others
to continue the execution from that point. This heavy-handed approach would not
only be slow, but would also require a special-purpose compiler to implement in
practice. Lock-free locks have therefore been written off as impractical, and not
been studied much further for about 30 years.

Renewed Interest. Recent work [6] has renewed interest in lock-free locks by
introducing a new approach that makes them much more practical. At a high level,
this new approach converts any critical section to an idempotent version of itself
through a log-based mechanism rather than a context-saving one. This mechanism
introduces a log that is shared among all helpers of a given critical section, and
ensures that they all observe the same shared memory values for each instruction
in the code by logging the first value observed by any process that ran the code.
This approach does away with inefficient context-saving, instead requiring only
one extra log access per instruction. Additionally, it allows the approach to be
implemented in a simple library, thus enabling code written for blocking locks to
be easily converted to its lock-free counterpart. In the next section, we describe
this idempotence construction in more detail.

Practical potential. Ben-David et al. implemented their idempotence construc-
tion and the resulting lock-free lock abstraction in a library, demonstrating the
potential that lock-free locks have [6]. In particular, they converted several lock-
based data structures into lock-free ones by simply applying the library, and ran



experiments in various environments comparing the performance of lock-based
data structures to that of lock-free ones. While their experiments were much more
thorough, we show a representative plot from their paper here, in Figure 1.
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Figure 1: Throughput of singly and doubly linked lists. The ‘bl’ and ‘lf’ suffixes
represent the blocking and lock-free version of the lock algorithm of [6], respec-
tively.

The figure shows the empirical performance of various implementations of
linked-lists (both singly and doubly linked). In particular, two hand-tuned lock-
free implementations from the literature are shown (Harris’s lock-free singly linked
list [28] (harris_list), and an optimized version of Harris’s list [17] (harris_list_opt)).
Furthermore, two simple lock-based linked-list algorithms, one singly linked (lazylist)
and the other doubly linked (dlist) are implemented, and converted to be lock-
free using the lock-free lock library of [6]. Both their blocking and their lock-free
version are shown. In the plot, blocking algorithms are represented with a dot-
ted line. The plot shows the algorithms’ scalability as the number of threads in-
creases. A workload of 5% updates, split evenly between inserts and deletes, and
95% lookups is run, and keys are chosen according to a zipfian distribution with
parameter 0.75. The experiment was run on a machine with 72 physical cores,
each with two-way hyperthreading, so the number of parallel processes possible
at any one time on the machine is 144.

Unsurprisingly, none of the algorithms scale much once the physical limit of
parallelism is hit. However, it is interesting to note that the blocking algorithms’
performance drastically degrades once that limit is hit, and the system becomes



oversubscribed (i.e., uses more processes than are available on the machine). This
nicely demonstrates the downside of blocking locks; in an oversubscribed system,
it is much more likely that a process holding a lock will be scheduled out by
the system and will stall for long periods of time. The plot clearly shows that
lock-free locks fix this problem. Importantly, in practice oversubscription may be
difficult to avoid, since most machines are used for running several independent
applications at a time, and those applications are unaware of each other’s resource
usage.

It is also clear that while the two lock-free algorithms that employ the lock-
free lock library scale similarly to their hand-designed lock-free competitors, and
much better than their blocking counterparts, they are still slower than the hand-
designed versions. This is also unsurprising. Using a general methodology almost
always implies giving up possible optimizations. However, the performance of the
library-based versions is still competitive, and shows the potential that lock-free
locks have.

The rest of this article. It is clear from the above discussion that lock-free locks
have the potential to make lock-free algorithms easy to design and implement effi-
ciently. However, there is still plenty of room to improve both their practical per-
formance and their theoretical guarantees. In the rest of this article, we overview
the current state of the art for lock-free locks; we discuss the notion of idempo-
tence in more detail and present the idempotence construction of [6], and then
discuss an algorithm that makes lock-free locks guarantee the stronger wait-free
progress in a scalable manner [4]. After presenting these algorithms, we conclude
the article with a brief discussion of the many open directions left to explore in
this space. However, before delving into what is known and unknown about lock-
free locks in more detail, we first briefly discuss realistic expectations about what
lock-free locks can offer, and what they cannot.

3.1 What Lock-Free Locks Aren’t

While we believe that the idea of lock-free locks carries a lot of potential, we must
also recognize the limitations of this approach. In particular, there are various
causes for slowdowns and bottlenecks in concurrent systems that cannot be fixed
by replacing locks with their lock-free counterparts, regardless of how efficient the
lock-free lock constructions can get. We now briefly discuss two such potential
bottlenecks, where fixing them can be crucial for the performance of a system, but
the solution will not be found by delving deeper into the lock-free lock approach.



Buggy critical sections. In this article so far, we discussed some reasons that
processes may be slow while executing their critical section, for example, if they
get scheduled out by the operating system. However, another potential reason for
slowdowns experienced by a process holding a lock is bugs; if the critical sec-
tion code runs into an infinite loop, for example, that process may never release
the lock. The lock-free approach discussed here does not address this issue. In
fact, employing lock-free locks in this situation may make matters worse; instead
of having one process stuck trying to execute a buggy critical section, we may
have multiple processes stuck executing that same code when trying to help. To
address this source of slowdowns in lock-based system, an entirely different ap-
proach must be taken. Indeed, entire fields are dedicated to testing, debugging, and
verification of software. When applying lock-free locks more broadly in practice,
it would be good to combine their use with methods that ensure the correctness of
the critical sections being helped.

Speeding up critical sections. Note that the lock-free lock approach has several
processes redundantly (though safely) executing the same code. While this redun-
dancy might be negligible when critical sections are short, this repeated helping
can cause a lot of wasted work (CPU cycles). In some applications, the critical
section that a process may want to run can be lengthy and slow, even without
any performance bugs. Ideally, if many processes are all spending cycles trying
to execute that critical section, one may think that that combined effort could be
used to speed up the code. However, that is not what lock-free locks do. Instead,
the different helping processes are each executing the entire critical section inde-
pendently, racing to complete it in its entirety. This may in fact slow down the
critical section further, since the processes may interfere with each other’s cache
locality. To speed up the execution of a critical section with more processes, the
critical section must be carefully analyzed to find and expose its potential paral-
lelism; this direction, while it may be very beneficial in some applications, is not
explored in the study of lock-free locks.

4 Idempotence
The notion of idempotence appears in many different fields, including in linear
algebra, networking, and recently, persistent memory. In all these settings, the
meaning of idempotence is always intuitively the same; an operation is idempo-
tent if applying it multiple times has the same effect as applying it just once. For
concurrent programs, the definition of idempotence is a little bit more involved,
since it must account for not only applying an operation multiple times sequen-
tially, but also for the possibility that several concurrent processes executed the



same operation at the same time. It is thus surprisingly non-trivial to define. Here
we briefly describe the definition of concurrent idempotence presented recently
in [4] and discuss the intuition behind it. We note that similar notions have been
used in the past – including in the early works surrounding lock-free locks [3,53],
in the definition of normalized lock-free algorithms [51], and for persistent mem-
ory constructions [5] – but were never explicitly defined as idempotence.

Definition. To capture concurrent idempotence, we must first understand what
a concurrent execution, or history, can look like. We model concurrency through
a sequence of steps, where each step is an instruction executed by some process.
Each process executes a sequence of steps that is dictated by the code it is running,
and the steps of different processes are interleaved to form a concurrent history.
When we discuss idempotence, we must refer explicitly to the code that generated
these steps, to be able to determine whether this code is idempotent. Below is the
definition of concurrent idempotence taken from [4].

A piece of code C generates a sequence of steps S C, which can depend
on the state of memory. A step s ∈ S C is said to be a step for C,
regardless of which process executes it. A run of a piece of code C
is the sequence of steps taken by a single process to execute or help
execute C. The runs for C can be interleaved. An instantiation of
a piece of code C is a subsequence of the steps for C in a history H,
possibly from many different runs, such that those steps are consistent
with a single run of C.

Definition 4.1 (Idempotence [4]). A piece of code C is idempotent if
in any valid history H, there exists a valid instantiation H′ of C that
is a (possibly empty) subsequence of all operations from runs of C in
H, such that

1. if there is a finished run of C (response on C), then the last step
of the first such finished run must be the end of H′, and

2. all steps for C in any of its runs in H that are not in H′ have no
effect on the shared memory.

Intuitively, this definition allows the possibility that many different processes
are executing runs of code C, but there is some way to combine the runs of many
different processes into a subsequence of steps that were possibly executed by
different processes, but together look as if they form a single run. That single run,
or instantiation of C is intuitively ‘the one that counts’, and all other steps taken
for C have no effect.



Log-Based Construction. We now discuss the construction of [6], which takes
any piece of code C implemented from reads, writes, compare-and-swap, and
memory allocation/de-allocation instructions, and constructs a version of it which
satisfies the above notion of idempotence.

Recall that to use idempotence for safe lock-free locks, a process p must make
a descriptor available in which it specifies its critical section. The idempotence
construction presented in [6] takes advantage of the fact that there is already a de-
scriptor shared by all processes wanting to execute this critical section and adds to
its a log that is shared as well. The log’s length corresponds to the number of in-
structions in the critical section, that is, there is one entry in the log per instruction
in the critical section code. When a process (either p or another process contend-
ing on the lock) executes p’s critical section, it uses a compare-and-swap to try to
write the result of the ith instruction of its critical section execution into the ith slot
of p’s log. If the CAS fails, this means that another process has already executed
this instruction; the process adopts the result written in the log as its own result,
and proceeds from there. Intuitively, this ensures that all processes executing p’s
critical section read the same values (either directly from memory if they were
the first to do so, or from the log otherwise), and therefore, assuming the critical
sections are deterministic and processes do not rely on their private register values
when executing a critical section, also write the same values.2 Thus, overall, all
executions of p’s critical section have exactly the same effect. This construction is
quite general. It works not only for reads and writes, but also if the critical section
includes CAS instructions, and memory allocations and de-allocations.

The overhead that is introduced by this approach is easy to analyze. For each
instruction in the original critical section, an extra CAS on the log is introduced.
Note that if the lock is not highly contended and there is just one process execut-
ing this critical section at any point in time, then this overhead is minimal, since
the log is likely cached (or mostly cached) for that process. However, if there is
contention, i.e., at least two processes competing for this lock and concurrently
executing this critical section, then each log access may constitute an extra cache
miss, as cache coherence may move the log from the cache of one process to the
cache of the other. In this case, it is likely that each non-log shared-memory ac-
cess also causes a cache miss for the same reason. Thus, the log accesses approxi-
mately double the cache misses incurred by the program when there is contention.
However, we note that this may constitute far more cache misses than the original
process would have incurred were it to run its code using a traditional blocking
lock, since cache coherence would not be a major factor in that scenario. As the

2These assumptions are fairly general. The second can be guaranteed by having the initiating
process write its private register values in the descriptor along with the critical section code, so
that all helpers can use the same values.



experimental results of Ben-David et al. show, this cost can be non-negligible, but
may still pay off if processes are likely to be stalled for other reasons [6].

5 Wait-Freedom
Regardless of how they achieve idempotence, all lock-free lock constructions we
discussed so far operate in the same manner: each lock has a descriptor pointer,
which is null when the lock is free. When a process p wants to acquire a given
lock `, it tries to swing `’s descriptor pointer from null to its own descriptor using
a CAS. If it succeeds, then p has now acquired the lock. Otherwise, this means
that some other process p′ has acquired the lock. p then helps p′ run its critical
section, which the descriptor specifies, in an idempotent manner, and then tries
again to swing `’s descriptor pointer to its own descriptor.

This simple approach guarantees lock-free progress; as long as some process
wants to acquire lock `, some process will acquire lock ` and complete its critical
section. However, there is no guarantee that any one specific process will succeed
in its own acquisition of the lock as long as others are contending on it. In partic-
ular, in the description above, when p tries again to swing the pointer to its own
descriptor, it may fail because a new process p′′ did so first. This could continue
forever, leaving p to help others continuously but never make progress for itself.

This phenomenon is by no means unique to lock-free locks. Many lock-free
algorithms exhibit similar behavior; while global progress is guaranteed for the
system, no individual process is guarantees to make progress. A stronger notion
of progress is wait-freedom. A wait-free algorithm guarantees progress for each
individual process within a finite number of its own steps. There’s another advan-
tage to wait-freedom: it allows us to easily discuss the complexity of an algorithm
in terms of the number of steps that a process must take in the worst case to exe-
cute its operation. This is much more difficult to do in algorithms that are lock-free
but not wait-free, since that number may be infinite.

This leads to a natural question: can we make lock-free locks have a wait-free
progress guarantee? If so, how many steps does a process p need to take to acquire
a lock?

First cut: a queue-based solution. One potential solution to this question would
be to employ a wait-free queue per lock; processes contending on the lock can en-
queue themselves onto the queue, and then help everyone ahead of them before
acquiring the lock for themselves. A similar approach is commonly used in the
implementation of fair solutions to the mutual exclusion problem (except that
processes wait for their turn without helping in the case of traditional blocking
locks) [32,39,46]. This solution could work quite well for lock-free locks as well.



The number of steps each process would take to acquire the lock in this case would
be proportional to the contention it encountered (i.e., how many other processes
were ahead of it in the queue) and the number of steps it takes to help each pro-
cess, plus some overhead to enqueue itself at the beginning. If an efficient queue
is used, this solution can be quite efficient.

However, there is another consideration to take into account. As discussed in
Section 1, many practical lock-based systems employ locks at a fine granularity.
In particular, this means that processes are likely to acquire not one lock, but
several locks simultaneously before being able to execute their critical sections.
In this setting, the queue-based approach can quickly lose its good step complexity
guarantees. Consider, for example, a scenario in which each process in the system
wants to acquire at most 2 locks, and each lock has at most 2 processes contending
on it at any given time. This relatively low-contention setting should intuitively
allow each process to complete its execution quickly, within a constant number of
its own steps. However, long dependency chains can form; if a process p wants
to acquire lock `1, which has process p1 already on its queue, p must help p1

complete its critical section first. If p1 must first acquire lock `2 before it can
execute its own critical section, then process p must help it acquire `2 as well.
However, before doing so, it might need to help a process p2 acquire `2, which
may then need to acquire `3 as well. In this way, the number of processes that
p must help before executing its own critical section could blow up to include
the total number of processes in the system, despite only facing a small constant
number of contenders on its own lock.

A randomized approach. Recent work has addressed this problem and pre-
sented a randomized protocol for wait-free locks in which the expected number of
steps to acquire a set of locks does not depend on the size of the entire system [4].
In more detail, the algorithm considers tryLock attempts in which a process speci-
fies a subset of the locks in the system that it wants to simultaneously acquire, and
the critical section it wants to run if successful. A tryLock attempt may fail, in
which case the locks are not acquired, the critical section is not run, and the pro-
cess may try again in a new attempt. The algorithm guarantees that each attempt
has a fair chance to succeed; if each attempt aims to acquire at most L locks, and
each lock has at most C processes contending on it at any time, then the attempt
has a chance of at least 1/CL to succeed. Furthermore, the number of steps a
process takes per attempt is O(L2 · C2 · T ), where T is the maximum length of a
critical section.

At a high level, the algorithm works by assigning a random priority to each
contending process, and processes only help those who have a higher priority
than their own. Each tryLock attempt gets a single priority that it uses for on all



its locks for this attempt. Each lock has a ‘competing set’ that can be thought of as
the equivalent of its queue in the queue-based approach; this set keeps track of the
processes currently contending on the lock. When starting an attempt, a process
p does the following: (1) it adds its descriptor to the competing set of each lock
in its desired lock set, but without specifying its competing priority. (2) it checks
all of the competitors on its competing set, helps the one with the highest priority
on each lock, and ‘kills’ all the others. If some competitor doesn’t have a priority,
it is skipped (not helped and not killed). That is, for any attempt in the competing
set of some lock, if its priority exists but is not the highest in this set, then p sets
its state to ‘aborted’. No aborted attempts will be helped in the future. (3) Now p
finally chooses a random priority and updates its descriptor accordingly. Process
p now repeats the second step, this time with the possibility that it will be the
winner.

The random priorities help avoid the long chains that prevented the queue-
based approach from scaling; rather than having to help a process until it succeeds
in its critical section, a process p helping a process p1 may now abort p1 if p1

does not have the top priority on its other locks. This is the key idea that helps the
randomized algorithm achieve its good step complexity bounds.

Subtleties and downsides of the algorithm. When analyzing randomized con-
current protocols, an adversary is used to model the system scheduler to capture
worst case executions. It is generally assumed that the adversary does not know
the future, so does not know the results of future coin flips or random decisions,
but can know what has happened so far in the execution. This adversary can be
quite powerful in skewing the probability that a process p will succeed. For ex-
ample, in the algorithm of [4], p goes through a first round of helping before
choosing its own priority and starting to compete to avoid effects that the adver-
sarial scheduler could have. In particular, if p were to choose its priority and com-
petes immediately, an adversary that wants to decrease p’s probability of success
can wait until it sees that p’s competitors currently have relatively high priorities,
and only let p compete at that point. This would inherently skew p’s chances of
success.

The algorithm of [4] achieves bounds that depend on the maximum number of
locks requested in each attempt, the maximum amount of contention per lock, and
the maximum length of a critical section. These bounds must be known in advance
to the algorithm, as it in fact makes use of these bounds explicitly. In particular, it
injects an artificial delay before choosing p’s priority during the execution of an
attempt, making p potentially take extra useless steps just to waste time, to ensure
that p always takes the same number of steps between the beginning of its attempt
and the point at which its priority is revealed to the adversary. This is done to



prevent the adversary from using the number of steps p takes during its execution
to skew its probability of success. These delays are fairly unsatisfying, but are
required to achieve the guaranteed bounds.

6 Open Problems
Since their introduction in the 1990s, lock-free locks have been mostly dismissed
in the literature as impractical, and their study has only been renewed recently.
This leaves our understanding of lock-free locks in its infancy, with many open
problems, both theoretical and practical, left to be resolved. To wrap up this
article, we briefly outline some of these promising future directions.

Reducing the overhead of idempotence. Lock-free locks must inherently in-
troduce some overhead as compared to their blocking counterparts, since they
must ensure that the code that is run in their critical sections is idempotent. The
potential of lock-free locks was only understood when an idempotence construc-
tion with relatively low overhead was introduced last year [6]. However, it may
be possible to improve this overhead, thereby immediately improving the perfor-
mance and practicality of lock-free locks, as well as other applications of idem-
potence (see Section 4 for a brief discussion of such applications).

The goal of improving the overhead of idempotence constructions can be ap-
proached from several angles. The most immediate one from the discussion in
this article is to find a construction that is as general as the one presented in [6],
but more efficient. As discussed in Section 4, the construction of [6] already only
introduces constant overhead in theory, making it difficult (though maybe not im-
possible) to improve the theoretical overhead. However, there may be plenty to do
to improve its overhead in practice. In particular, this construction exhibits poor
cache locality due to coherence issues when sharing the log among concurrent pro-
cesses. It would be interesting to study whether an idempotence construction can
be found that suffers less from coherence misses. Furthermore, we note that aside
from the coherence issues, the construction of Ben-David et al. forces each new
helping process to execute the entire critical section from the beginning, poten-
tially wasting a lot of redundant work. This may be fine for short critical sections,
but can become unacceptable when critical sections are long. Another direction
for improving this construction’s overhead is to find a way to allow helpers to skip
ahead to where the most advanced process has reached in the critical section code.
This is something that is achieved by the context-saving approaches discussed in
Section 3, but at too great a cost. Is there a way to avoid having each process
re-execute the entire critical section without resorting to saving the entire context
of each process after each instruction?



On a similar vein, another way to optimize the construction would be to reduce
its space overhead. The log used in the construction of Ben-David et al. is as long
as the number of instructions in the critical section. This may be ok overhead for
short critical sections, but may become prohibitive if critical sections are longer.
Is there a way to reduce the space overhead required for idempotence?

A different approach to improving idempotence overhead can also be taken.
Namely, rather than sticking with an idempotence construction that can be applied
to extremely general code, one can ask whether there are some types of critical
sections that are naturally more amenable to becoming idempotent with minimal
overhead. Of course, an immediate answer is yes – some critical sections may
be idempotent to begin with, therefore requiring no overhead at all. This opens
up the possibility that one could define classes of code that are in the middle; not
already idempotent as-is, but may easily become so. Understanding how general
such classes of code may be could open up the potential to employ lock-free locks
in various real-world applications almost for free. Interestingly, this direction ties
in nicely with the very active research area on lock-free primitives and ways to
make lock-freedom more easily applicable in general (see Section 2 for a brief
discussion of these works), as such studies also aim to identify general types of
code that are both useful in many applications and easy to make lock-free.

Improving theoretical guarantees of wait-free locks. We know that wait-free
locks can be achieved in a fine-grained lock system in time proportional to the
number of locks each process may acquire at once and the amount of contention
each lock may have at any given time. These bounds are quite good for many
systems, since they don’t depend on the total number of locks in the system or the
total number of processes in the system, both of which could be huge compared
to the local contention or the size of each individual operation.

However, the bounds we have leave a lot to be desired. Firstly, it’s possible
that the dependencies on L, the maximum number of locks per attempt, and C,
the maximum contention per lock, could be decreased. Currently, for a process
to successfully acquire its locks, it needs O(L3 · C3 · T ) steps in expectation, with
T being the maximum length of a critical section. Is it possible to reduce this to
only a linear dependence? Perhaps more interestingly, recall that for these bounds
to hold, L, C, and T must be known to the algorithm in advance. The algorithm
loses its complexity guarantees if these bounds are surpassed at any point. This is
somewhat unsatisfying; many systems may not know exact bounds on contention
and size of operations in advance, and may experience workloads in which there
are long periods of low contention and small operations, with intermittent busy pe-
riods where these figures are much higher. Finding an algorithm that can adapt to
the actual amount of contention and size of operations in an execution is therefore



an important future direction.
Finally, we also note that the algorithm presented in [4] is randomized, and

therefore all bounds are given in expectation rather than in the worst case. Re-
call that the queue-based approach described in Section 5 is deterministic, but its
worst case step complexity bounds depend on the total number of processes in the
system. Is it possible to find a deterministic wait-free lock algorithm that does not
depend on the total size of the system?
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