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Computer Science Institute, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

https://www.mff.cuni.cz/en/iuuk
https://www.mff.cuni.cz/en
koucky@iuuk.mff.cuni.cz
https://iuuk.mff.cuni.cz/~koucky/


The Power of Constructing Bad Inputs

Ryan Williams*

CSAIL & EECS
MIT, Cambridge, Massachusetts, USA

rrw@mit.edu

Abstract

A lower bound, showing that a function f cannot be computed by some
class C of algorithms, necessarily shows that for every algorithm A in C,
there must exist a “bad” input x such that f (x) , A(x). We consider the
computational complexity of generating such bad inputs for a given f and
class C, and we study how the complexity of this task relates to existing (and
major open problems in) lower bounds.

1 Introduction
Out of decades of thought on how to prove complexity lower bounds (and fail-
ing), one maxim repeatedly emerges: strong complexity lower bounds are hard
for us to prove. There are many formal “barriers” known to proving complex-
ity lower bounds, such as the relativization barrier [BGS75], Razborov-Rudich
natural proofs [RR97], algebrization [AW09, IKK09] (see also [AB18, AB19]),
and locality [Yao89, CHO+20]. For instance, relativization tells us that we cannot
rely on any generic “black-box” arguments for proving strong complexity lower
bounds, but many fundamental proof techniques in complexity theory are generic
in exactly this sense. The algebrization barrier generalizes the relativization barrier,
showing that the non-relativizing methods behind theorems like IP = PSPACE,
querying polynomials that represent computations, are not sufficient in themselves
to prove (for example) P , NP, P , PSPACE, EXP , ZPP, NEXP , BPP,
EXPNP , BPP, et cetera. I’ve often summarized the state of affairs as: not only can
we not prove lower bounds, but we can prove that we cannot prove lower bounds.
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program.
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So, we have apparently a lot of information about what the proofs of longstand-
ing open complexity lower bounds cannot look like, in that we know a variety of
limitations on how such proofs must proceed. The starting point of this article is to
ask the question:

Q1: What could a proof of a strong lower bound look like?

Intuitively, complexity barriers tell us what techniques we should try to avoid, if
we wish to separate complexity classes. Can we identify obligations that strong
lower bounds must obey, properties that such lower bound proofs (of even “easier”
separations, like EXPNP , BPP, separating exponential time with an NP oracle
from randomized polynomial time) must possess? Rather than studying what is
not sufficient for lower bounds, could we get a handle what is necessary?

Please keep in mind that we are not starting from a blank slate: it is not that
there are no lower bounds whatsoever. When one reads introductions like this, one
might get the impression that there are essentially no complexity lower bounds
in the literature. This is not really true. There are many areas within complexity
theory, for which researchers have managed to establish hosts of interesting and
strong limitations and no-go theorems. One of the most successful of these areas
is communication complexity [KN97, RY20] which has aided complexity lower
bounds in VLSI circuit design, streaming algorithms, and Turing machines, to take
three examples. Nevertheless, it is felt that there is a gap (or maybe even a chasm)
between what kinds of lower bounds can currently be proved, and what we’d like
to prove. Perhaps a better question then, is:

Q2: What properties are missing from the lower bounds that we know
how to prove, which we will have to include in a proof of (say) NEXP ,
BPP?

What are the missing ingredients in our lower bound toolkit? In this article, I
will highlight one type of answer, from a recent paper co-authored with Lijie Chen,
Ce Jin, and Rahul Santhanam [CJSW21]. I will discuss an interesting way in which
efficient algorithms will have to be central to resolving major complexity lower
bound questions. Let me be clear that I do not claim to have fully answered the
above question Q2, in any sense. If I have brought your attention to the question,
and if I have gotten you to think about it on your own for ten minutes, I will
consider my job successful. (Even if you think my answer to the question is
terrible.)

2 Lower-Bounding as Finding Bad Inputs
To get a handle on question Q2, we start by looking very carefully at what it means
to prove a lower bound against a class of algorithms.



Let f : {0, 1}? → {0, 1} be a decision problem, and let A be a class of algo-
rithms. In particular, we stipulate that each A ∈ A has a finite-length description,
and each A takes in arbitrary-length Boolean inputs, outputting a single bit. An
algorithm A is said to compute f if for all but finitely many inputs x, A(x) = f (x).
(We permit “all but finitely many”, because if there were only finitely many inputs
on which A and f differ, then this finite set could be “hard-coded” directly, into
another larger but still finite algorithm that computes f everywhere.)

Therefore, a lower bound that “ f is not inA” is a claim of the form:

(∀A ∈ A)(∃∞n)(∃xn ∈ {0, 1}n)[A(xn) , f (xn)].

That is, for every candidate algorithm A for computing f , someone has to “respond”
with a bad input xn on which A does not compute f correctly. In fact, in the
given setup, we should construct infinitely many bad xn inputs (if there were only
finitely-many bad inputs, they could be hard-coded into the algorithm).

Now fix a function f , and fix an algorithm A from a classA. We ask:

Q3: What is the complexity of constructing a bad input xn of length n?

Suppose you are provided 1n, the string of n ones. We are asking: how difficult
is it for you to construct an input xn ∈ {0, 1}n such that f (xn) , A(xn)? (You can
output whatever n-bit string you want, if n is not the length of some bad input; in
principle, there may be only infinitely many bad n.)

2.1 Two Types of Lower Bounds
Roughly speaking, the literature on complexity lower bounds gives two types of
answers to question Q3. That is, the known proofs of lower bounds yield two
different types of answers to Q3:

1. “Random” or non-constructive ways of choosing bad inputs. In general,
such lower bound proofs rely on counting/information-theoretic arguments.
For example, many proofs of time-space lower bounds for explicit problems
in P (e.g., [Hen65, Maa84, BC82, Bea91, BJS01, Ajt02, BSSV03, MW19])
work by choosing a random xn from some distribution of n-bit inputs, and
arguing that the randomness in the string can confound the algorithm A into
making a mistake.

For a simple example of such a lower bound, one can prove that no de-
terministic finite automaton (DFA) computes the language of palindromes
{xxR | x ∈ {0, 1}?}, by arguing that we could “compress” an arbitrary string
x by storing the state qx of the DFA in which the last bit of x is read, and
the length |x|, which takes only O(log |x|) bits. Then, if the DFA recognizes



palindromes, there should be a unique path of length |x| from qx to a final
state, and the string xR must be encoded along the path. Thus we could
encode every x with a description of length only O(log |x|). However, a
random string x requires a description of length at least |x| − 1 with nonzero
probability, so we have a contradiction.1 This argument generalizes to show
that any DFA that recognizes all palindromes of length n requires at least
2Ω(n) states. At any rate, the argument shows that a random x is a bad input
with decent probability.

2. “Efficient” ways of choosing bad inputs. Many proofs of lower bounds
based on diagonalization arguments provide an efficient method for generat-
ing the bad input.

For example, the standard proof by diagonalization that the Halting Problem
is undecidable can be modified to have this property. In particular, given
the code of a Turing machine that claims to solve the Halting Problem, one
can efficiently produce a “bad” input on which the Turing machine fails
to correctly decide the Halting Problem.2 Similarly, the old-school proof
of the Time Hierarchy Theorem, where one constructs a hard function by
simulating different time-bounded Turing machines on different inputs (and
flipping the answer), also has this property.

The idea of focusing on constructing bad inputs, when reasoning about im-
possibility results in computing, is in fact quite old. For instance, the celebrated
Myhill-Nerode theorem [Ner58] says that a set of strings S is not regular if and
only if there exists an infinite distinguishing set for S : an infinite set of “bad”
strings that effectively forces every prospective DFA to need infinitely many states.

Mulmuley [Mul10] has suggested that to make progress on separating P and
NP, one must search for algorithms which can efficiently find counterexamples
for any algorithms claiming to solve the conjectured hard language. This view has
been dominant in the GCT approach towards the VNP vs. VP problem [Mul07,
Mul12, IK20]. One can think of our present article as confirming Mulmuley’s
intuition in a broader sense than what was known before.

1This is the first theorem one learns on Kolmogorov complexity. See Chapter 6.4 of
Sipser [Sip06].

2For completeness, we sketch the proof. Given the code of some Turing machine H, let DH be
code for the “diagonal” machine which on an input x, flips the answer of H(〈x, x〉). Then H cannot
terminate with a correct output on the input 〈DH ,DH〉.



3 Starting Point: The Work of Gutfreund, Shaltiel,
and Ta Shma

The starting point of our work was thinking about a beautiful paper of Gutfrend,
Shaltiel, and Ta Shma [GST07]. They showed:

If P , NP, then bad inputs for every claimed poly-time algorithm for
SAT can be constructed in poly-time.

In particular, the following theorem can be derived from their arguments.

Theorem 3.1 (Follows from [GST07]). Assume P , NP. For every nk-time
decision algorithm A, there is an algorithm RA such that, for infinitely many n,
RA(1n) outputs a formula F′n of length n such that F′n is satisfiable if and only if
A(F′n) outputs “UNSAT”. Furthermore, RA(1n) runs in nO(k2) time.

That is, RA runs in polynomial time, and prints formulas on which A fails to
determine SAT correctly. We say that the algorithm RA is a refuter, since its job is
to refute the claim that A solves the SAT problem by producing bad inputs for A.

As their theorem is very important to our work, we will carefully outline a
proof of the theorem.

3.1 Refuter for Algorithms Trying to Print SAT Assignments

Let’s start by assuming P , NP, and derive a refuter for any nk-time algorithm
A that attempts to print a SAT assignment to its input formula, whenever a SAT
assignment exists. That is, our algorithm A first attempts to print a SAT assignment
to its input formula, and A determines “UNSAT” if the printed assignment fails to
satisfy, otherwise A determines “SAT”.

Under this setup, since it’s forced to print a SAT assignment, the algorithm A
will always correctly output “UNSAT” when it’s given an unsatisfiable formula.
Therefore, under this setup, every bad input for A must be a satisfiable formula
on which A determines “UNSAT”. (Furthermore, since we assume P , NP, there
must be infinitely many such formulas.)

This refuter is a bit easier to describe, yet it already captures the key idea: if
an algorithm A claims to solve SAT, then exploit its claimed ability to find its own
counter-examples.

We define the refuter as follows.



RA(1n): Use the Cook-Levin reduction to construct a 3CNF formula Fn that
is satisfiable if and only if the following holds:

(∃G : |G| = n)(∃a)[G(a) = 1 ∧ A(G) outputs “UNSAT”].

Run A on Fn. If A prints a satisfying assignment (G′, a′) to Fn, then output G′.
If A outputs “UNSAT” instead, then output Fn.

In more detail, since A is a poly-time algorithm, the property

(∃G : |G| = n)(∃a)[G(a) = 1 ∧ A(G) outputs “UNSAT”]

can be checked in NP. Therefore, applying the Cook-Levin reduction, there
is a 3CNF formula Fn such that Fn(G, a) is true if and only if G(a) = 1 ∧
A(G) outputs “UNSAT”. Since A runs in time nk, the formula Fn output by the
Cook-Levin reduction has size at most nO(k).

What does RA do? The refuter RA is asking A to print its own counterexamples!
That is, if A outputs a valid SAT assignment (G′, a′) on Fn, then G′ is a formula of
length n that is a “bad input” for A, by definition of Fn. Now we have two cases.

Case 1: If A outputs a valid SAT assignment G′ for Fn for infinitely many n,
the proof is complete: for infinitely many n, RA(1n) outputs a formula Fn of length
n such that Fn is satisfiable if and only if A(Fn) outputs “UNSAT”.

Case 2: The alternative is that for all but finitely many n, A outputs “UNSAT”
on Fn. In this case, RA(1n) outputs Fn on all but finitely many n. But since P , NP,
the formula Fn is actually satisfiable for infinitely many n. Therefore, for infinitely
many n, RA(1n) still outputs a formula that is satisfiable, yet A reports “UNSAT”.3

3.2 Refuter for Algorithms Trying to Decide SAT
Gutfreund, Shaltiel, and Ta Shma actually give a refuter for every poly-time
algorithm that attempts to decide SAT as well. This refuter works by exploiting the
well-known search-to-decision reduction for SAT. In particular, given an algorithm
A that only decides SAT, we can produce an algorithm B that can print SAT
assignments (when they exist) making only polynomially many calls to A, by
plugging in values of variables into the formula and calling A to check if the
reduced formula is still satisfiable. Now, the refuter has the following form, for
i = 1, 2, 3:

3A minor detail: in this case, RA is (infinitely often) outputting a formula of length L = nO(k)

on the string 1n, so it does not meet our original specification, where we want to output a string of
length n on 1n. However, a modified algorithm R′A which on the input string 1L, determines n and
runs RA(1n), does meet the specification.



Ri
A(1n) : Use the Cook-Levin reduction to construct a 3CNF formula Fn

that is satisfiable if and only if the following holds:

(∃G : |G| = n)(∃a)[G(a) = 1 ∧ A(G) outputs “UNSAT”].

Use search-to-decision on A to search for a SAT assignment to Fn. (Call A on
Fn; if it reports “UNSAT” then abort. Try setting a variable x to 0, in Fn. If
A reports “SAT” then continue with another variable. If A reports “UNSAT”
then flip the value of x to 1. If A still reports “UNSAT” then abort. If A reports
“SAT” then continue with another variable.)
There are three possible outcomes:

1. A(Fn) = “UNSAT”. In this case, output Fn.

2. A finds a SAT assignment (G′, a′). In this case, output G′.

3. In the search-to-decision reduction, A reaches a subformula F′′n such
that A(F′′n ) = “SAT”, but when a variable x of F′′n is set 0 (yielding
F′′n [x = 0]), or set 1 (yielding F′′n [x = 1]), A reports “UNSAT” in both
cases and we abort.
Then, A must be wrong on at least one of the three. In this case, R1

A(1n)
reports F′′n , R2

A(1n) reports F′′n [x = 0], and R3
A(1n) reports F′′n [x = 1].4

Similarly to the previous refuter against algorithms printing SAT assignments,
there are a few cases to check.

Case 1: If A outputs a valid SAT assignment on Fn for infinitely many n, we
are done.

Case 2: If A reports “UNSAT” on Fn for all but finitely many n, we are done
(same analysis as the refuter from the previous subsection).

Case 3: In the remaining case, A only outputs a SAT assignment on Fn for
finitely many n, yet A reports “SAT” on Fn for infinitely many n. Thus there are
infinitely many n such that A reports the wrong answer on at least one of

F′′n , F′′n [x = 0], F′′n [x = 1].

Since R1
A always reports F′′n , R2

A always reports F′′n [x = 0], and R3
A always reports

F′′n [x = 1], there must be an i ∈ {1, 2, 3} such that for infinitely many n, Ri(1n)
outputs a formula on which A is incorrect!

This concludes the proof of Theorem 3.1.



A Universal Refuter. In fact, for separations like that of SAT against nk-time
algorithms that print SAT assignments, one can construct a single nO(k2)-time refuter
R which works against all nk-time algorithms A, infinitely often. The idea is to
simply perform “Levin search” [Lev73]: we consider a “meta-algorithm” A′ which
on a formula F of length n, runs each of the first log(n) algorithms with nk-time
alarm clocks, and if any of the first log(n) algorithms outputs a SAT assignment
to F, then A′ outputs it. Now, the refuter RA′ for A′ is a refuter for all nk-time
algorithms.

3.3 An Aside: Finding Hard Instances for Practical SAT Solvers
Although the above theorem is rather complexity-theoretic in nature, we believe
that the ideas could be useful in finding “hard instances” for practical SAT solvers.
Let t and m, n be positive integer parameters. For any given solver S , in principle
one can build a SAT instance FS ,n,t which is satisfiable if and only if there exists
a 3CNF G with m clauses and n variables such that G is satisfiable, yet S does
not conclude that G is satisfiable within t decisions/backtracks/seconds (whatever
notion of time is easiest to encode). If S can solve FS ,n,t (indeed, if any solver can
solve FS ,n,t) then the solution will produce a hard instance. If no solver can solve
FS ,n,t, then the formula FS ,n,t is itself a good candidate for a hard instance. One can
imagine holding a “tournament” between a host of practical SAT solvers, feeding
various formulas FS ′,n,t into various solvers S ′′, to produce many interesting hard
instances.

4 Constructive Separations
Theorem 3.1 of the previous section showed that it’s possible to efficiently produce
“hard inputs” for claimed SAT solvers, assuming P , NP. To generalize this notion,
we propose the following definition, letting f be a decision problem andA be a
class of algorithms.

Definition 4.1. We say there is a P-constructive separation of f < A if for all
algorithms A ∈ A, there is a polynomial-time algorithm RA such that, for infinitely
many n, A(RA(1n)) , f (RA(1n)).

Thus, a P-constructive separation means that for every “weak” algorithm, we
can concoct a polynomial-time algorithm that produces bad inputs for the weak
algorithm. Theorem 3.1 can then be expressed as:

If P , NP, then there’s a P-constructive separation of SAT < P.5

5Here, we are conflating the class of polynomial-time algorithms with the class of decision
problems solvable in polynomial time. My apologies if this bothers you.



So, we know that proving P , NP will also require us to be able to efficiently
construct hard SAT instances for polynomial-time algorithms. A natural question
arises:

Which complexity lower bound problems require constructive separa-
tions, and which do not?

Our question is an algorithmic one about the nature of a lower bound. What
algorithms are implied by complexity lower bounds? In our paper [CJSW21],
we try to make a case that constructive separations are a key to proving major
separations between complexity classes. We prove that:

1. Essentially all major separation problems regarding polynomial time will
require constructive separations.

2. Making many known lower bounds constructive requires resolving other
major lower bound problems.

That is, we believe that the property of constructivity (the ability to efficiently
refute weak algorithms) lies in the “gap” between lower bounds we know how to
prove, and major lower bounds that we’d like to prove. Constructivity is a property
we want of lower bounds; it is in a sense the opposite of a barrier.

In the next two subsections, we explain our results in more detail.

4.1 Major Complexity Class Separations Will Require Con-
structive Separations

One of our main theorems is that for many choices of complexity classes C andD,
a separation C , D implies a constructive separation of f < C for some function
f ∈ D.

Theorem 4.2 (Informal, see [CJSW21] for details). For all classesC ∈ {P,ZPP,BPP}
and all classesD ∈ {NP,Σ2P,PP,PSPACE,EXP,NEXP,EXPNP

}, if C , D, then
there is a C-constructive separation of f < D, for a “natural” function f ∈ D.

The above theorem is informal, in that (a) we have not defined “natural” (but
the properties needed hold of most D-complete problems), and (b) we have not
defined what it means to be ZPP-constructive or BPP-constructive (but it is a
natural randomized notion of constructive separation; see the paper for details).

The above Theorem 4.2 generalizes Theorem 3.1 to hold for many different
classes C and D. A couple of these other cases were known prior to our pa-
per [GST07,DFG13], but most were not. See our paper [CJSW21] for more details.



Theorem 4.2 says that, if we manage to prove a good separation against (random-
ized) polynomial time, then we are also going to get a constructive separation (in
which we can efficiently produce bad inputs). So, we might as well think about
constructive methods for proving lower bounds!

In Section 5, we will give one particular example of such a result, proving
that if P , PSPACE, then there is a P-constructive separation that true quantified
Boolean formulas (TQBF) is not in P.

4.2 Making Known Lower Bounds Constructive Implies Strong
Circuit Lower Bounds

In the second part of the paper [CJSW21], we show how constructive separations
for several different well-known lower bounds (based on information-theoretic
arguments) would turn out to imply breakthrough lower bounds. That is, “construc-
tivizing” any one of many known lower bounds would have actually have rather
significant lower bound consequences. The three regimes we consider are:

• (randomized) streaming lower bounds,

• query complexity lower bounds, and

• superlinear-time one-tape Turing machine lower bounds.

Streaming lower bounds and query complexity lower bounds are generally con-
sidered to be well-understood, and certain superlinear-time lower bounds against
one-tape Turing machines have been known for decades [Hen65, Maa84]. Surpris-
ingly, we show in [CJSW21] that making these separations constructive would
imply breakthrough separations such as EXPNP , BPP, or even P , NP (if the
algorithm producing bad inputs is restricted enough). Here, we briefly outline our
results in more detail.

Constructivizing Streaming Lower Bounds Implies Breakthroughs. In the
streaming algorithm setting, an algorithm (storing little space) must pass through
all bits of the input stream exactly once, and output a good answer when the
stream ends. A host of problems are well-known to be unconditionally hard for
randomized streaming algorithms that use a small amount of working space, and
these lower bounds typically follow from communication complexity lower bounds.
For a canonical example, in the Set-Disjointness (DISJ) communication problem,
Alice is given an n-bit string x, Bob is given an n-bit string y, and the goal is
to determine whether or not the inner product 〈x, y〉 =

∑n
i=1 xiyi is nonzero, with

minimal communication. We can think of DISJ as a function that takes (x, y) and
outputs a Boolean value, in the natural way. The randomized communication
complexity lower bounds for DISJ [KS92, Raz92, BJKS04] directly imply that



no n1−ε-space randomized streaming algorithm can correctly decide the simple
language

LDISJ = {xy ∈ {0, 1}? × {0, 1}? | |x| = |y|,DISJ(x, y) = 1}.

Therefore, every (randomized) streaming algorithm using only no(1) workspace
must fail to correctly decide LDISJ on some inputs. We show that efficient refuters
against streaming algorithms attempting to solve any NP problem (not just LDISJ)
would imply a breakthrough separation against general randomized algorithms.

Theorem 4.3 (Informal). For every language L ∈ NP, a PNP-constructive separa-
tion of L from uniform randomized streaming algorithms using O(log n)ω(1) space
implies EXPNP , BPP.

Essentially every lower bound proved against streaming algorithms in the
literature holds for some problem whose decision version is in NP. Theorem 4.3
shows if any such lower bound can be made constructive, even if it takes PNP to
produce the bad inputs, then EXPNP , BPP follows, a longstanding (embarassing)
open problem in complexity theory. And if we could replace “PNP-constructive”
with “P-constructive”, we would prove that EXP , BPP. The upshot is that
the counterexample inputs printed by any such refuter algorithm must encode a
function that is actually hard for general randomized algorithms.

Constructivizing Lower Bounds for One-Tape Turing Machines Implies
Breakthroughs. It has been known at least since Maass [Maa84] that nondetermin-
istic one-tape Turing machines require Ω(n2) time to decide even simple problems
such as PALINDROMES. However, the lower bounds (and others like it) are proved
by non-constructive counting arguments. (One can also use Ω(n) lower bounds on
the nondeterministic communication complexity of the EQUALITY function, to
prove such lower bounds.) Similarly to the previous setting, we show that if there
is a PNP refuter that can produce bad inputs for a given one-tape (nondeterministic)
Turing machine, then ENP (2O(n) time with an NP oracle) requires exponential-size
circuit complexity. This in turn would imply BPP ⊆ PNP, a breakthrough simula-
tion of randomized polynomial time. The theorem we prove is very general, and
applies to many more problems than just PALINDROMES:

Theorem 4.4. For every language L computable by a nondeterministic n1+o(1)-
time RAM, a PNP-constructive separation of L from nondeterministic O(n1.1)-time
one-tape Turing machines implies ENP 1 SIZE[2δn] for some constant δ > 0.

Let us demonstrate how Theorem 4.4 works, with the specific example of
PALINDROMES. Our approach can be readily generalized to a proof of Theo-
rem 4.4.



Proof of Theorem 4.4. (Sketch) Let ε > 0 be arbitrarily small. Our goal is to
construct a nondeterministic one-tape Turing machine M that takes N1+cε time for
a universal constant c ≥ 1, such that M has the following properties:

• For every n, M accepts every palindrome xxR ∈ {0, 1}2N of length 2N = 2n+1

such that x, construed as the length-2n truth table of a function from n bits to
1 bit, has circuit complexity at most 2εn.

• M rejects every string y ∈ {0, 1}2N that is not a palindrome and has circuit
complexity at most 2εn, when construed as a function from n + 1 bits to 1 bit.

• M rejects every string of odd length (for simplicity, we only consider even-
length palindromes, of the form xxR).

That is, M correctly decides PALINDROMES on all strings of circuit complexity
at most 2εn. This Turing machine M exists unconditionally: its correctness does
not rely on any assumptions, and we will describe how to construct M later.

Given that such an M exists, for sufficiently small ε > 0, M runs in time o(N2).
Therefore it must fail to correctly solve PALINDROMES on infinitely many inputs.
Consider any PNP algorithm R that, on the input 1N , prints an input zN ∈ {0, 1}N on
which M fails to decide PALINDROMES, for infinitely many N.

The properties of M imply that the string zN does not have circuit complexity
at most 2εn. Therefore, there is a PNP procedure R that, on infinitely many 1N ,
prints the truth table of a function with circuit complexity greater than 2εn. We can
produce a function f ∈ ENP with circuit complexity greater than 2εn, as follows.

f (x) := Let n = |x|. Run R(12n
), producing a string z2n of length 2n.

Let y1, . . . , y2n be the list of all n-bit strings in lex order.
Output the i-th bit of z2n , where x = yi.

Observe that the truth table of f , on inputs of length n, is precisely the string
z2n . Therefore, f requires circuit complexity greater than 2εn, for infinitely many n.

Now we turn to the construction of the desired nondeterministic Turing machine
M; here, we just sketch how it works. First, M rejects its input z immediately if
|z| is odd; this can be easily checked in linear time in a standard way. Note that
M can also compute |z| directly in N · poly(log N) time, by “dragging along” an
O(log n)-bit counter on its single tape as it streams through the bits of z, using a
larger alphabet to store the content of the counter. Next, given that |z| = 2N = 2n+1,
M nondeterministically guesses a circuit C of size at most Nε, using O(Nε log N)



bits of nondeterminism. The intention is that z = xxR and C is a circuit such that
C(i) outputs the i-th bit of x. The machine M can check this as follows. First, by
“dragging along” the description of C as it reads the bits of x, M can verify that
C(i) outputs the i-th bit of x. Evaluating C on an input takes no more than O(Ncε)
time per bit of x for a fixed constant c ≥ 1, which is in total O(N1+cε) time over all
bits of x. Finally, M can verify that z is a palindrome by using C to check that the
first bit of z matches the last bit, the second bit of z matches the next-to-last bit,
and so on, using evaluations of C to check the first half of z. All this takes no more
than O(N1+cε) time, and M accepts if and only if all bit checks pass.

It is easy to see that if z has circuits of size at most Nε, and z is a palindrome,
then the computation path of M that guesses a small circuit correctly will indeed
accept z. However, if z is not a palindrome, then no computation path of M will
accept z. �

Constructivizing Certain Query Lower Bounds Implies Breakthroughs.
Even obtaining efficient refuters for query lower bounds on the “coin problem” [BV10]
would imply strong lower bounds. We define the problem Promise-MAJORITYn,ε

for a parameter ε < 1/2, as follows:

Promise-MAJORITYn,ε: Given an input x ∈ {0, 1}n, letting p =
1
n

∑n
i=1 xi, distinguish between the cases p < 1/2 − ε or p > 1/2 + ε.

It is well-known that every randomized query algorithm needs Θ(1/ε2) queries to
solve Promise-MAJORITYn,ε with constant success probability (uniform random
sampling is the best one can do). That is, any randomized query algorithm making
o(1/ε2) must make mistakes on some inputs, with high probability. We can show
that constructing efficient-enough refuters for this simple sampling lower bound
would imply P , NP. Please see the paper [CJSW21] for details.

Theorem 4.5 (Informal). A “uniform AC0” constructive separation of the problem
Promise-MAJORITYn,ε from all randomized query algorithms that make only
o(1/ε2) queries and run in poly(1/ε) time, implies P , NP.

Finally, we also show that constructive separations for the Minimum Circuit
Size Problem (MCSP) against AC0 circuits would also imply unexpected break-
through lower bounds. (Informally, the Minimum Circuit Size Problem (MCSP) is
the problem of determining the circuit complexity of a given 2n-bit truth table.) As
above, it is known that MCSP does not have small AC0 circuits [ABK+02], and
the question is whether there is a constructive separation. We refer the reader to
the paper [CJSW21] for details.



5 Proving Polynomial-Time Lower Bounds for TQBF
Requires Constructivity

To give one example of how Theorem 3.1 can be extended beyond P , NP
to other major open problems about polynomial time, I will demonstrate here
how P , PSPACE implies a P-constructive separation of TQBF < P. That is,
assuming P , PSPACE, given any poly-time algorithm A that attempts to decide
the PSPACE-complete problem TQBF (true quantified Boolean formulas), we can
efficiently find QBFs on which A fails. Notice, since we are now talking about a
lower bound on a PSPACE-complete problem, there is no way we can definitively
check all answers to the algorithm A in polynomial time: unless NP = PSPACE,
we cannot even give short proofs that a QBF is true or false. Nevertheless, we can
still locate bad inputs for A. I have chosen the particular example of refuters for
P , PSPACE with TQBF, because one can apply similar ideas as in the refuter
for P , NP with SAT. In the paper [CJSW21], we use more sophisticated ideas to
obtain refuters for many more complexity class separation problems.

In particular, assume P , PSPACE, and let A be an nk-time that attempts
to decide TQBF by outputting “true” or “false” on every encoding of a Boolean
formula. For a quantified Boolean formula (QBF) F, let “F′′ denote its encoding
in binary. Say that A is inconsistent on F if:

• Either F = (∀x)G(x) for a QBF G with one free variable, and
A(“F′′) , A(“G(0)′′) ∧ A(“G(1)′′),

• or F = (∃x)G(x) for a QBF G with one free variable, and
A(“F′′) , A(“G(0)′′) ∨ A(“G(1)′′).

Of course, (∀x)G(x) is true if and only if G(0) and G(1) are true, and (∃x)G(x) is
true if and only if G(0) or G(1) is true. Thus, A is inconsistent when it fails to
satisfy this basic property of quantifier semantics, and A must be incorrect on at
least one of three QBFs.

We can define a refuter against A, as follows. Let i ∈ {1, 2, 3}.

Ri
A(1n): Construct a formula Fn encoding the property

(∃ QBF “G′′, |G| = n)[A is inconsistent on G].

If A(Fn) outputs “false”, then output Fn.
Otherwise, A(Fn) outputs “true”. As in Theorem 3.1, use search-to-decision to
try to construct a QBF G on which A is inconsistent.
If the search-to-decision fails (we reach a formula that A declared “true” but its



two subformulas are declared “false”), then as in Theorem 3.1, we have a set
of three QBFs such that A is incorrect on at least one of them; Ri will output
the ith such formula.
If the search-to-decision succeeds, then A is inconsistent on G, and we obtain
three QBFs (G and two other “subformulas”) such that A is incorrect on at least
one of them; Ri will output the ith such formula.

Analogously as in Theorem 3.1, we can argue that there is always some i ∈
{1, 2, 3} such that for infinitely many n, Ri

A(1n) outputs a QBF on which A is
incorrect.

6 Conclusion
We hope this article has encouraged the reader to think more about how algorithmic
methods are actually necessary for proving strong complexity lower bounds.

Our work leaves open several interesting directions. For example, it is not
entirely clear how to extend our results to separations with complexity classes
within P. For example, let L be a decision problem which is complete for P
under logspace reductions. If L is not decidable in LOGSPACE, does a “logspace-
constructive” separation of L < LOGSPACE follow? What about constructive
separations for non-uniform complexity classes, such as P/ poly? Should we
expect a constructive separation of SAT < P/ poly, and if so, what properties
should the algorithms/circuits have?

Finally, in this invited article, I have not provided an overview of all relevant
prior work. Such an overview can be found in our paper [CJSW21].
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