
The Computational Complexity Column
by

Michal Koucký

Computer Science Institute, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

https://www.mff.cuni.cz/en/iuuk
https://www.mff.cuni.cz/en
koucky@iuuk.mff.cuni.cz
https://iuuk.mff.cuni.cz/~koucky/


Automata and Formal Languages:
Shall we let them go?

Michal Koucký
Computer Science Institute
Charles University, Prague
koucky@iuuk.mff.cuni.cz

Abstract

In this article I give my thoughts on the role of automata and formal
languages in our computer science curriculum.

1 Introduction
This article is a reflection of my thoughts on the content of the course on automata
and formal languages at Charles university in Prague. Similar courses are a
mandatory part of computer science curricula at many other universities around
the globe. Four years ago I was asked by our math department to redesign their
graduate level course Automata and computational complexity. As the name
suggests traditionally that course contains a large portion of automata and formal
language theory. After discussions with the head of the math department I realized
that they do not necessarily care for any particular topic what they care for is that
the course covers theoretical foundations of computer science. So I redesigned
their course to match my view of foundations of computer science.

As you might expect from the title of this article the role of automata diminished
substantially in the new course. I will come back to that new course later. However,
this prompted me to take a fresh look at our own computer science course Automata
and grammars. I believe the time has come to let the automata go and replace the
content of the course by what it perhaps always meant to be: theoretical foundations
of computer science.

Next I will briefly review the origins of the current course and I will try to put
it into historical context of development of computer science over past 90 years.
Then I will propose what should be covered in a modern course on theoretical
foundations of computer science, and I will go over some hurdles which one might
encounter when trying to modify the course.

koucky@iuuk.mff.cuni.cz


1.1 Automata and grammars
Our course on automata and formal languages was designed more than 40 years
ago and it is largely based on the classical book by Hopcroft and Ullman [8], and its
Czech cousin by Chytil [2]. Over the years the course underwent various updates
and modifications as the allotted time for the course varied. Today the course
mostly follows Sipser’s book [10] or the current version of Hopcroft-Ullman [6].
However, the core focus of the course remains the same: automata, grammars and
languages recognized by those models.

The course used to be accompanied by a course on recursion theory and later
also by a course on computational complexity. The two latter courses moved to
graduate level courses during the past 20 years and were substantially overhauled.1

The course Automata and grammars remains mostly unchanged with its focus
on automata, grammars and classification of problems according to the Chomsky
hierarchy.

My view is that the course was originally designed to reflect then-current
knowledge of theoretical foundations of computer science and complexity theory.
Let us briefly review the historical context of its origins and development in theory
of computing over the years.

1.2 Brief history of modern theory of computing
Here, I am going to present my personal take on history of theoretical computer
science. It might not be perfectly accurate but it should be approximately correct.
With few exceptions I will ignore the names of many great computer scientists
who contributed to this development so I will focus only on the main ideas. A
thorough historical account of development of computability is given in the book
by Soare [11]. Development of complexity theory is covered in the article by
Fortnow and Homer [4].

The development of modern computer science was instigated by logicians.
Their program from the turn of the 20th century summarized by Hilbert asked
whether mathematical truth can be established by mechanical means. Those ques-
tions led to development of models for mechanical procedures: In 1931-34, Gödel
proposed definition of recursive functions and Church proposed his λ-calculus,
then in 1936 Turing defined what we call Turing machines [12]. All those models
were quickly established to be equivalent. Arguably, a Turing machine is the right
model to capture computation, and it allowed for the development of theory of
computation as we know it today. Considerations about what problems are algorith-
mically solvable lead to development of computability theory (recursion theory).

1In line with European-wide changes to university systems, after the year 2000 our originally
five year program was divided into a three year bachelor program and a two year master program.



The recursion theory is concerned with what can be computed by an algorithm and
what cannot be computed by an algorithm. A prototypical uncomputable problem
is the Halting problem.

Soon after development of the concept of computability many people realized
that not all algorithmically solvable problems are born equal: Some problems are
harder to solve than others, they are more complex, their computation might require
more steps to complete. This aspect was famously referred to by Gödel in Gödel’s
lost letter.

A simple tool to gauge the complexity of a computational problem is provided
by a finite automaton. Finite automata were proposed in 1940’s. Motivated by
parsing human languages and programming languages, over the next three decades
finite automata flourished into a rich theory for formal language classification:
from finite automata, to automata with multiple heads, marking automata, push-
down automata, etc. This development is captured till large extent by the book of
Hopcroft and Ullman [8].

One of the central concepts in this area, the Chomsky hierarchy, was formulated
in the late 50’s [1, 3]. Chomsky hierarchy provides a tool to classify computational
problems into easy to solve: regular languages, moderate: context-free languages,
harder: context-sensitive and hardest: recursively-enumerable. This is a crude
classification of their computational complexity.

This is the development which is covered by the typical courses on automata
and formal languages.

The 1960’s saw the origins of a different approach to classification of problems
into easy and hard to solve: Hartmanis and Stearns [7] defined space and time
complexity, and proved basic hierarchy theorems. This was in the context of
nascent computational complexity theory. This theory took a central stage with the
introduction of NP-completeness in the 1970’s. During that decade, the notions of
efficient algorithms, complexity measures and complexity classes took a firm hold
in theoretical computer science. In its generality those concepts are the focus of
structural complexity theory. For concrete algorithmic problems this is the focus
of algorithm and data structure design.

The new point of view stimulated rapid development of new algorithmic tech-
niques and data structures. The complexity approach also laid foundations for
modern cryptography. The introduction of public key cryptography in the 1970’s in
connection with complexity theory led to modern day theoretical cryptography. The
1980’s saw development of circuit complexity (studied in the Soviet Union already
in 60’s and 70’s) The late 1980’s and early 90’s gave us interactive proof-systems,
zero-knowledge proofs and the PCP Theorem. This stimulated the development of
non-approximability and approximation algorithms in the 1990’s and after 2000.

The class P (polynomial time) was established as the equivalent of efficient
computation already in the 1970’s. Despite many of its desirable properties (e.g.



closeness under poly-time reductions) not everyone was happy with that definition.
The late 1990’s saw first incursions into sub-linear time algorithms which morfed
into the area of property-testing. Concurrently, massive amounts of data that
needed to be processed led to the notion of streaming algorithms which blossomed
in the first two decades of the 21st century. Streaming algorithms are on some
level similar to finite automata: they perform one pass over the data and they allow
limited but non-constant memory. However, they go hand in hand with relaxing
the requirement for correctness as they allow the answer to be only approximately
correct and typically they are randomized.

Late in the first decade of the 21st century new area emerged: fine-grained
complexity. The fine-grained complexity pushes the realm of efficiently computable
closer to usual algorithm design. It establishes very efficient reductions between
various concrete problems of interest. It also links the difficulty of algorithm design
for NP-complete problems such as Satisfiability with the difficulty of improving
algorithms for ordinary problems in P such as All-Pairs Shortest Paths.

All those areas including automata theory are active to this day although their
focus has shifted in new directions, and the mainstream of theoretical computer
science has changed since the 1970’s. The main take-away message from the past
90 years of development of theory of computation is the quest to capture what is and
what is not efficiently solvable. The notion of efficiency is not static. It progressed
from being computable (recursion theory), to being in P (complexity theory), to
being linear or quadratic (streaming algorithms and fine-grained complexity).

Arguably the course on automata and formal languages should reflect the
progress of our understanding.

2 Foundations of computer science - new syllabus
Here I will present my take on what a redesigned course should focus on. On a
high level the focus should stay the same as before, the course should introduce the
following ideas: There are problems that can be solved by a computer, and there
are problems that cannot be solved by a computer (computability). Some problems
that can be solved by a computer are easier to solve than others (complexity). Those
two points should be the primary focus. Here is the syllabus of my Automata and
computational complexity course I designed for the math department [9]:

1. Computational models: computer, RAM, Turing machine, Boolean circuit.

2. Undecidable problems, Halting problem, reductions.

3. Time complexity, class P.



4. Class NP, NP-hardness, NP-completeness, Cook-Levin Theorem.

5. Space complexity, class PSpace, PSpace-complete problem QBF, Polynomial
Hierarchy.

6. Class Log, s-t-Connectivity, Savitch’s Theorem.

7. Finite automata, regular languages.

8. Hierarchy Theorems, fine-grained complexity.

To start, any argument about computability or complexity needs a rigorous
definition of an algorithm, so we need models of computation: Turing machines,
RAM, their equivalence. Once we prove that the Halting Problem is uncomputable
it is useful to extend the result to other problems via reductions. Then time
complexity should come in the picture together with the class P representing
efficiently computable problems. Afterwards we can move to the class NP defined
as a class of problems for which we can efficiently verify solutions but we may
not know how to find their solutions efficiently. NP-hardness via polynomial
time reductions is a natural next step. This sets the stage for NP-completeness of
Satisfiability (SAT) and the Cook-Levin Theorem.

Space is another resource which one cares about so we should move on to
space complexity: the class PSpace with the complete problem Quantified Boolean
Formulas (QBF) as a natural generalization of SAT. By restricting the number
of quantifier alternations in QBF formulas we get the Σk-SAT, and the levels of
the Polynomial Hierarchy as the classes of problems reducible to the Σk-SAT by
polynomial time reductions.

PSpace contains the whole Polynomial Hierarchy and especially NP, so it
contains problems that we do not know how to solve efficiently. So we should
turn our focus to small space algorithms, the class Log of problems solvable in
logarithmic space. Arguing about problems in Log requires log-space reductions
which can be composed. A complete problem for Log is the s-t-Connectivity on
undirected graphs (without giving Reingold’s algorithm). One can venture into the
non-deterministic log-space (NLog) as the class of problems log-space reducible to
s-t-Connectivity on directed graphs. Once there it makes sense to show Savitch’s
Theorem that s-t-Connectivity can be solved in space O(log2 n).

At this point we can go even further with restricting space: we get the class
of problems solvable in constant space. Constant space on Turing machines is
equivalent to no-space as we can push the content of the tapes into the state of the
Turing machine. Problems decidable by a Turing machine with no-space can be
decided by a no-space Turing machine which moves its input head only in one
direction: finite automaton. Now we reached the well known class of regular



languages and our journey downwards stops here. We can show that the language
0n1n is not regular (without using the Pumping Lemma.)

Since we defined all the complexity classes we can compare them to each other
by means of Time Hierarchy and Space Hierarchy Theorems. An excursion into
fine-grained complexity is a natural next step: a connection between the hardness
of improving algorithms for NP-complete problems and problems in P is one of the
most enlightening discoveries of the past few decades. My favorite is the reduction
from SAT to the Orthogonal Vector Problem. It is easy and it gets the point across.

Optionally, one can throw in Boolean circuits as the model of non-uniform
algorithms. This is a model which many students are already familiar with. They
know Boolean circuits because they model real hardware, and because of the
special case: neural networks.

Nondeterminism. One can completely avoid talking about non-deterministic
computation per-se. Personally I am not sure whether we should teach all students
about the abstract construct which is the non-deterministic computation. If I need
to present this concept to my students in my graduate level classes I like to start
with randomized computation which is more natural and realistic. Students are
usually familiar with randomized computation because they know some random-
ized algorithms for particular problems. For beginners I prefer the presentation of
NP purely using the efficient verification paradigm (see e.g. the textbook by [5]).
Other non-deterministic classes (Polynomial Hierarchy, NLog) can be presented as
the classes of problems efficiently reducible to their respective complete problems.

Comparison with Automata and formal languages. Arguably, the high-level
structure of current courses on automata and formal languages is the same as
that of the proposed syllabus. The traditional course focuses on recognition of
languages by various models of computation with limits on their computational
resources. With respect to the new syllabus the only difference is the choice of
restrictions on those resources, the choice of the models, and going top-down
instead of bottom-up.

The focus on the current computational complexity will align the course with
other course such as on algorithm and data structure design. Those courses re-
volve around design of efficient algorithms and data structures with respect to
time and space complexity where we are concerned with the asymptotic behaviour
of the two measures. This is at odds with the Chomsky hierarchy, the classifi-
cation of problems according to what type of automata recognizes them (finite
automata/push-down automata/Turing machines).



3 Adopting a new syllabus
One of the technical hurdles to adopting a new syllabus is the availability of an
appropriate textbook. The best current textbook to cover the new syllabus could
still be the book by Sipser [10] if one skips Chapters 1 and 2. However, the book
in its current form is not ideal as there are many topics and exercises in the later
chapters that are concerned with a bit artificial problems on automata from earlier
chapters.

Another hurdle is the momentum of the education system. For better or worse,
university environment is a rather conservative place with respect to modification
of its curricula. There are competing interests of various parties, and different
courses are intertwined. Some of the concepts covered by the classical automata
and formal languages courses are relied upon in particular branches of computer
science.

Natural language processing historically relied upon grammars although most
of the current system rely on deep-neural networks. Similarly, theory of pro-
gramming languages relies on grammars although compilers and interpreters for
many current languages do not use them for parsing directly. The notion of finite
automaton is useful for software engineering to model systems which can be in re-
stricted number of distinct states. The same is true for description of cryptographic
primitives and network protocols. This has an impact on the area of software and
system verification. Niche applications of regular expressions are in some text
editors for searching and in system programming for rule specification. However,
none of those latter applications relies on the ability of finite automata to recognize
precisely regular languages which is the primary focus of the classical courses on
automata and formal languages.

So there are many areas which rely to some degree on the notions covered
by the course but perhaps they do not care so much about the closure of regular
languages under concatenation, union, intersection, etc. So they could perhaps be
satisfied with much more modest coverage of the topics.

Acknowledgements
I love finite automata and the beautiful theory surrounding them. I was introduced
to it by Michal Chytil in the very course I am discussing in this article. My master
thesis done under the guidance of late Vašek Koubek deals with the hierarchy of
marking one-way multi-head finite automata. I also love recursion theory. This was
sparked by passionate and thoroughly enjoyable lectures of Antonín Kučera. I owe
him for a discussion on the history of computability and a pointer to the book by
Soare [11]. Many years ago, Antonín Kučera in his intellectual honesty dissuaded



me from pursuing recursion theory for my doctoral studies and suggested to focus
my attention elsewhere. I know I wasn’t the only one receiving that advice from
him. I leave the reader with a question: How well do we serve our students if we
teach them a theory that they cannot develop substantially further?

References
[1] Noam Chomsky. Systems of syntactic analysis. J. Symb. Log., 18(3):242–256,

1953.

[2] Michal Chytil. Automaty a gramatiky. SNTL, 1984.

[3] Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of
context-free languages. In P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, volume 35 of Studies in Logic and the
Foundations of Mathematics, pages 118–161. Elsevier, 1963.

[4] Lance Fortnow and Steven Homer. A short history of computational complexity.
Bull. EATCS, 80:95–133, 2003.

[5] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
automata theory, languages, and computation - international edition, 2nd
Edition. Addison-Wesley, 2003.

[7] Juris Hartmanis and Richard Edwin Stearns. On the computational complexity
of algorithms. Trans. Amer. Math. Soc., 117:285–306, 1965.

[8] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation
to automata. Addison-Wesley series in computer science and information
processing. Addison-Wesley, 1969.

[9] Michal Koucký. NMMB415: Automata and computational complexity. https:
//iuuk.mff.cuni.cz/~koucky/vyuka/AVS-ZS2021/index.html, 2021.

[10] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, 1997.

[11] Robert I. Soare. Turing Computability - Theory and Applications. Theory and
Applications of Computability. Springer, 2016.

[12] Alan M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc., s2-42(1):230–265, 1936.

https://iuuk.mff.cuni.cz/~koucky/vyuka/AVS-ZS2021/index.html
https://iuuk.mff.cuni.cz/~koucky/vyuka/AVS-ZS2021/index.html

	Introduction
	Automata and grammars
	Brief history of modern theory of computing

	Foundations of computer science - new syllabus
	Adopting a new syllabus

