
The Logic in Computer Science Column
by

Yuri Gurevich

Computer Science & Engineering
University of Michigan, Ann Arbor, Michigan, USA

gurevich@umich.edu

Making Reversible ComputingMachines in a
Reversible Cellular Space

Kenichi Morita
Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Currently Professor Emeritus of Hiroshima University

km@hiroshima-u.ac.jp

Abstract

Reversible computing is a study that investigates the problem of how
computing is effectively performed in a reversible world. Since physical
reversibility is one of the fundamental microscopic laws of nature, it is im-
portant to clarify how computing machines are realized utilizing a reversible
law directly. In this survey/tutorial paper, we investigate this problem using
a reversible cellular automaton as a reversible environment, and search for a
new way of constructing reversible Turing machines (RTMs), a model of a
reversible computer, in it. That is to find a good pathway from a reversible
microscopic law to reversible computers. When doing so, it is convenient
to assume several conceptual levels on the pathway, by which the problem
is decomposed into subproblems. In the middle level on the pathway we
use a reversible logic element with 1-bit memory (RLEM), rather than a re-
versible logic gate, as a logical primitive. By these methods, we see that
RTMs can be implemented systematically even in a space that obeys a very
simple reversible microscopic law.

1 Introduction
A reversible computing machine is a system having a “backward deterministic”
property. That is to say, every computational state of the machine has at most
one predecessor state. Though its definition is thus simple, it has a close relation
to the physical reversibility, one of the fundamental microscopic laws in physics
[1, 8]. Therefore, it is important to know how reversible machines are realized by
utilizing reversible microscopic phenomena.

So far many kinds of reversible computing models have been proposed and
studied. One method of showing that a reversible computing model has a suffi-
cient computing power is to simulate an irreversible version of the model by a

https://orcid.org/0000-0002-9833-0539

reversible one, i.e., “reversifying” [4] the irreversible system. By this method,
computational/logical universality of various reversible models have been shown.
Reversifying techniques have been applied, for example, to Turing machines [1],
logic elements and circuits [3, 26], two-counter machines [12], two-way finite au-
tomata [7], two-way multihead finite automata [14], cellular automata [25], and
so on. Once universality of a reversible computing model is established by this
method, universality of another reversible model can be shown by simulating the
former by the latter. For example, it has been shown that a universal reversible
logic gate and its circuits are simulated by a simple reversible 2D cellular automa-
ton [11], and that a reversible Turing machine can be simulated by a reversible
1D cellular automaton [19]. In this way, it turned out that, in many computing
models, computing powers do not decrease even if the reversibility constraint is
added.

Besides the study of individual reversible computing machines, it is also im-
portant to investigate how these machines can be efficiently realized in a space that
obeys a simple reversible law. In other words, it is to investigate the problems of
how simple reversible primitive operations can be that support universal compu-
tation, and how reversible macroscopic systems can be realized from a reversible
microscopic law. When we try to implement reversible machines in such a simple
environment, it is convenient to consider several implementation levels ranging
from a microscopic level to a macroscopic one as shown in Fig. 1. By this, the
problem is decomposed into several simpler subproblems. In the bottom level, i.e.,
Level 1, there is a simple microscopic reversible law of evolution, which corre-
sponds to a microscopic physical law. In Level 2, various phenomena that emerge
from the reversible microscopic law can be observed. In Level 3, we implement
suitable reversible logic elements using the observed phenomena. In Level 4, com-
bining the reversible logic elements, functional modules for reversible computers
are composed. In the top level, i.e., Level 5, a reversible computing machine is
systematically constructed by assembling the reversible functional modules.

Whether we can successfully find a pathway from a reversible microscopic law
to reversible computers firstly depends on the choice of the reversible microscopic
law in Level 1. In this paper, we use a reversible cellular automaton for it as
a thought experiment. It is a reversible elementary square partitioned cellular
automaton (ESPCA) with a hexadecimal identification number “01caef”’ [17],
which is denoted by P0 for short in this paper. It is described by only six local
transition rules, and thus very simple. Though the reversible cellular automaton
used here is an artificial model, and its physical realizability in the nano-scale
level is not known at present, they will give new vistas in reversible computing. In
particular, we shall see that even from very simple local rules, useful phenomena
that can be used for composing reversible machines are found in Level 2.

It also depends on the choice of reversible logic elements in Level 3. Here, we

Level 5
s

✲
✛❄ s

✲
✛❄

✻

s
✲

��

✻

❅❅

s
✲

✛❄ s
✲

✛❄

✻

s
✲

��

✻

❅❅

s
✲

✛❄ s
✲

✛❄

✻

s
✲

��

✻

❅❅

s
✲

✛❄

✻

s
✲

��

✻

❅❅

s
s

s
s

s

s
s
s
s s

❄

❄

❄

❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻ ✻

✲
✛

✲

✲
✛

✲

✲
✛

✲
✛

✲

✛

✲

❄

s
s

s
s

s

s
s
s
s s

❄

❄

❄

❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻ ✻

✲
✛

✲

✲
✛

✲

✲
✛

✲
✛

✲

✛

✲

❄

s
s

s
s

s

s
s
s
s s

❄

❄

❄

❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻ ✻

✲
✛

✲

✲
✛

✲

✲
✛

✲
✛

✲

✛

✲

❄

· · ·

Head 0 1 0

q0 q1 q2 qa qr

✲Start•

✛Accept

✛Reject

[q0,0,1,R,q1] [q1,0,1,L,qa]
[q1,1,0,R,q2] [q2,0,1,L,qr]

[q2,1,0,R,q1]

✛SLc

✲SL′

✛SRc

✲SR′

✛R1

✲W0′

✛R0

✲W1′

Reversible Turing

machines

⇑

Level 4
s

✲
✛❄

✻

s
✲

��

✻

❅❅

s
✲

✛❄

Write-and-
merge

Head-
shift

Read-and-
branch

✛SLc′

✲SL

✛SRc′

SR

✛R1′

W0

✛R0′

W1

SLc

✲ SL′

SRc

✲ SR′

R1
✲ W0′

R0
✲ W1′

0qi 1qi

❄
qi1

❄
qi0

Functional modules

composed of RLEMs

⇑

Level 3

•• •• •• •••• •• •• ••
•• •••• ••

•• •• •• •••• •• •• ••

•• •••• ••
•• •• •• •••• •• •• ••

•• •• •• ••
•• •• •• •• •• ••
•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• •• •• •• ••

•• •• • •• •• •• ••
•• •• •• ••

•• •• •• •• •• ••
•• •• •• •• •• •• •••• •• •• •• ••

•• ••
•• •• •• •••• •• •• ••

•• •• •• ••
•• •• •• •• •• ••
•• •• •• •• •• ••
•• •• •• •• •• •• • •• ••
•• •• •• •• •• •• • •• ••
•• •• •• •• • •• ••
•• •• •• •• •• •• • •• ••
•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •••• •• • •• ••

•• •• • • •• •••• •• • •• ••
•• •• • •• •••• •• • •• ••

•• •• • •• •••• •• • • •• ••
•• •• • •• •••• •• •• ••

•• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• • •• •• •• •• •• •••• •• • •• •• • •• •• •• •• •• ••

•• •• • •• •• •• •• •• •• •• •• • •• •••• •• • •• •• •• •• • •• ••
•• •• • •• •••• •• • •• ••

•• •• • •• •••• •• • •• ••
•• •• •• •••• •• • •• ••

•• •• • • •• •••• •• • •• ••
•• •• •• •••• •• •• ••

•• •• • • • • • •• •••• •• • • • • • •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• • •• ••
•• •• • • • •• •••• •• • • •• ••

•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• • •• •••• •• •• •• •• •• •• •• •• •• •• •• • •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• • •• •••• •• •• •• •• •• •• •• •• •• • •• ••

•• •• •• •••• •• •• ••
•• •• • •• •••• •• • •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •••• ••

Reversible logic element

with memory (RLEM)

⇑

Level 2
••

••
••

Useful phenomena in the

reversible space

⇑

Level 1

✲

0

•
✲ •

1

•
• ✲ ••

c

•

•
✲ •

•
a

•
•• ✲ •••

e

•
•

•
• ✲ ••••

f

Reversible microscopic

law of evolution

Figure 1: A pathway from a reversible microscopic law to reversible computers

use a reversible logic element with 1-bit memory (RLEM) rather than a reversible
logic gate. We shall see that RLEMs can be implemented using a small number
of phenomena found in Level 2. In addition, construction of reversible computing
machines in the upper levels is greatly simplified.

In Levels 4 and 5, a reversible Turing machine (RTM), an abstract model of a
reversible computer, is constructed. To do so, in Level 4, functional modules are
composed out of RLEMs. Then, in Level 5, RTMs are systematically constructed
by assembling the modules.

The contents of the following sections are as follows. In Sect. 2 reversible
Turing machines are defined, and computational universality results of their re-
stricted subclasses are surveyed. In Sect. 3 reversible logic elements with memory
(RLEM) are given, and a construction method of RTMs using a particular RLEM
called a rotary element (RE) is explained. In Sect. 4 a very simple 2D cellular
automaton called an elementary square partitioned cellular automaton (ESPCA)
is introduced, and useful phenomena in the particular reversible ESPCA P0 are
explored. Using them, an RE is implemented in P0, and then RTMs are realized
as configurations of P0. Sect. 5 gives concluding remarks.

2 Reversible Turing Machine (RTM)

A reversible Turing machine (RTM) is a standard model in the theory of reversible
computing. Lecerf [9] first investigated RTMs, and showed unsolvability of the
halting problems and some related problems. Bennett [1] studied them from the
viewpoint of thermodynamics of computing, and showed that any irreversible TM
can be converted into an equivalent RTM.

2.1 Definitions and examples

A one-tape Turing machine (TM) consists of a finite control, a read-write head,
and a two-way infinite tape divided into squares in which symbols are written.
Formal definition of a TM is as follows.

Definition 2.1. A one-tape Turing machine (TM) is defined by

T = (Q, S , q0, F, s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of tape
symbols, q0 is an initial state (q0 ∈ Q), F is a set of final states (F ⊆ Q), and s0 is
a special blank symbol (s0 ∈ S). Here, δ is a move relation, which is a subset of
(Q × S × S × {L,N,R} × Q). The symbols “L", “N", and “R" are shift directions
of the head, which stand for “left-shift", “no-shift", and “right-shift", respectively.
Each element of δ is a quintuple of the form [p, s, s′, d, q], which is called a rule of
T . It means if T reads the symbol s in the state p, then write s′, shift the head to the
direction d, and go to the state q. We assume each state q f ∈ F is a halting state,
i.e., there is no quintuple of the form [q f , s, s′, d, q] in δ. In this paper, we assume
T is deterministic. Hence, for any pair of distinct quintuples [p1, s1, t1, d1, q1] and
[p2, s2, t2, d2, q2] in δ, the relation (p1 = p2) ⇒ (s1 , s2) holds.

Reversibility of a TM is defined as below.

Definition 2.2. Let T = (Q, S , q0, F, s0, δ) be a TM. We call T a reversible TM
(RTM), if the following holds for any pair of distinct quintuples [p1, s1, t1, d1, q1]
and [p2, s2, t2, d2, q2] in δ.

(q1 = q2) ⇒ (d1 = d2 ∧ t1 , t2)

It means that for any pair of distinct rules, if the next states are the same, then the
shift directions are the same, and the written symbols are different. The above is
called the reversibility condition for TMs.

Note that, in [1], RTMs are defined in a quadruple form, where read-write rules
and head-shift rules are separated. This formulation is useful when composing an
“inverse” RTM that undoes the computation performed by a given RTM. However,
here, we employ the quintuple formulation, since the number of rules for defining
an RTM in the quintuple form is about a half of that for defining an RTM in the
quadruple form. See Sect. 5.1.3 of [15] for a conversion method between these
two forms.

An instantaneous description (ID) of a TM is an expression to describe its
computational configuration.

Definition 2.3. Let T = (Q, S , q0, F, s0, δ) be a one-tape TM. We assume Q∩ S =

∅. An instantaneous description (ID) of T is a string of the form αqβ where
q ∈ Q and α, β ∈ S ∗. Let λ denote the empty string. The ID αqβ describes
the computational configuration of T such that the content of the tape is αβ (the
remaining part of the tape contains only blank symbols), and T is reading the
leftmost symbol of β (if β , λ) or s0 (if β = λ) in the state q. An ID αqβ is called
a standard form ID if α ∈ (S − {s0})S ∗ ∪ {λ}, and β ∈ S ∗(S − {s0}) ∪ {λ}. Namely,
a standard form ID is obtained from a general ID by removing superfluous blank
symbols from the left and the right ends. An ID αq0β is called an initial ID. An
ID αqβ is called a final ID if q ∈ F.

The transition relation among standard form IDs of T is denoted by |−−T . Let
αqβ and α′q′β′ be two standard form IDs. If α′q′β′ is obtained from αqβ by
applying a rule in δ of T , then we write αqβ |−−T α′q′β′, and say that T goes
to the computational configuration α′q′β′ from αqβ in one step. For example, if
[q, s, s′,R, q′] ∈ δ, α ∈ (S − {s0})S ∗, and β ∈ S ∗(S − {s0}), then αqsβ |−−T αs′q′β.
Though the relation |−−T is conceptually straightforward one, its formal definition
is slightly complex, since only standard form IDs are considered, and thus we have
to deal with many cases. Hence, its definition is omitted here (see Sect. 5.1.1.3 of
[15] for its precise definition).

The reflexive and transitive closure of |−−T is denoted by |−−T
∗ . The transitive

closure is denoted by |−−T
+ . The relation of n-step transition is denoted by |−−T

n .
Let γ be a standard form ID of T . We say γ is a halting ID, if there is no ID
γ′ such that γ |−−T γ′. Let αi, βi ∈ S ∗, and pi ∈ Q (n ∈ N, i = 0, 1, . . . , n).
We say α0 p0β0 |−−T α1 p1β1 |−−T · · · |−−T αn pnβn (or α0 p0β0 |−−T

∗ αn pnβn) is a
complete computing process of T starting from α0 p0β0, if α0 p0β0 is an initial ID
(i.e., p0 = q0), and αn pnβn is a halting ID.

We give two examples of RTMs. In the following sections, they are con-
structed using reversible logic element with memory (RLEM), and then imple-
mented in a simple reversible cellular automaton.

Example 2.1. An RTM Tparity defined below is a very simple example.

Tparity = (Qparity, {0, 1}, q0, {qa}, 0, δparity)

Here, Qparity = {q0, q1, q2, qa, qr}, and δparity are given below.

δparity = { [q0, 0, 1,R, q1], [q1, 0, 1, L, qa], [q1, 1, 0,R, q2],
[q2, 0, 1, L, qr], [q2, 1, 0,R, q1] }

It is easy to see that Tparity is reversible. Consider the pair of rules [q0, 0, 1,R, q1]
and [q2, 1, 0,R, q1]. The next states in these rules are the same (i.e., q1). We can
see the shift directions in them are the same (i.e., R), and the written symbols
are different (i.e., 1 and 0). Thus the pair satisfies the reversibility condition in
Definition 2.2. No other pair of distinct rules have the same next state. Therefore
Tparity is reversible. Complete computing processes starting from the IDs q0011
and q00111 are as follows.

q0011 |−−Tparity
1q111 |−−Tparity

10q21 |−−Tparity
100q1 |−−Tparity

10qa01
q00111 |−−Tparity

1q1111 |−−Tparity
10q211 |−−Tparity

100q11 |−−Tparity
1000q2 |−−Tparity

100qr01

For a given string 01n, the RTM Tparity tests whether n is even or not. If it is even,
Tparity halts in the final (accepting) state qa. Otherwise it halts in qr. All the read
symbols are complemented.

Example 2.2. An RTM Tpower is defined by

Tpower = (Qpower, {0, 1}, q0, {qa}, 0, δpower).

Here, Qpower = {q0, q1, . . . , q7, qa, qr}, and δpower are given below.

δpower = { [q0, 0, 0,R, q1], [q1, 0, 0,R, q2], [q2, 0, 0, L, q6], [q2, 1, 0,R, q3],
[q3, 0, 1, L, q4], [q3, 1, 1,R, q3], [q4, 0, 0, L, q7], [q4, 1, 0, L, q5],
[q5, 0, 1,R, q2], [q5, 1, 1, L, q5], [q6, 0, 0, L, qr], [q6, 1, 1,R, q1],
[q7, 0, 0, L, qa], [q7, 1, 1, L, qr] }

It is again easy to see that Tpower satisfies the reversibility condition. Complete
computing processes starting from q0001111 and q000111111 are as follows.

q0001111 |−−Tpower

31 110 qa1001

q000111111 |−−Tpower

43 111 qr 01011

For a given string 001n, the RTM Tpower tests whether n is a power of 2. If it is
so, Tpower halts in the final state qa. Otherwise it halts in qr. It uses a straightfor-
ward algorithm that repeatedly divides the unary number n by 2, and checks the
remainder at each division. But, note that, Tpower is carefully designed so that it
satisfies the reversibility condition.

2.2 Computational universality of RTMs
Bennett [1] showed that any one-tape irreversible TM can be converted into an
equivalent three-tape RTM. Hence, the class of three-tape RTMs is computation-
ally universal.

Theorem 2.1. For any (irreversible) one-tape TM, we can construct a reversible
three-tape RTM that simulates the former and leaves no garbage information on
its tape.

Assume some class of RTMs is known to be computationally universal. If any
RTM in this class is simulated by an RTM in another class of RTMs, then the latter
class of RTMs is also computationally universal. In this way, computational uni-
versality of various subclasses of RTMs can be shown. In particular, it is possible
to show the following.

(1) For any RTM with k two-way infinite tapes, we can construct an RTM with
k one-way infinite (i.e., rightward infinite) tapes that simulates the former
(k = 1, 2, . . .).

(2) For any RTM with k rightward infinite tapes, we can construct an RTM with
only one rightward infinite tape that simulates the former (k = 2, 3, . . .).

(3) For any k-symbol RTM with one rightward infinite tape, we can construct a
two-symbol RTM with one rightward infinite tape that simulates the former
(k = 3, 4, . . .).

In the case of irreversible TMs, it is relatively easy to show the results corre-
sponding to the above (see, e.g., [6] for (1), [5] for (2), and [24] for (3)). However,
in the case of RTMs, the simulating TMs should be carefully constructed so that
they satisfy the reversibility condition. In addition, the notion of simulation should
also be defined properly. These details are found in Sect. 5.3 of [15].

By above, we obtain the following.

Theorem 2.2. The class of two-symbol RTMs with a rightward infinite tape is
computationally universal.

In the following sections, only two-symbol RTMs with a rightward infinite
tape are constructed by reversible logic elements, and then implemented in a sim-
ple reversible cellular automaton.

It has been shown that a one-tape many-state RTM can be simulated by a one-
tape three-state RTM having many symbols (see Sect. 5.3.5 of [15]). Therefore
we have the following.

Theorem 2.3. The class of three-state RTMs with a rightward infinite tape is
computationally universal.

In the case of irreversible TMs, it is known that a many-state TM can be sim-
ulated by a two-state TM [24]. Hence the class of two-state TMs is universal.
However, it is unknown whether the class of two-state RTMs is universal.

A universal Turing machine (UTM) is one that can simulate any TM. Let
UTM(m,n) denote an m-state n-symbol UTM. It is known that various kinds of
UTMs with very small m and n exist. For example, Rogozhin [23] gave UTM(4,6),
and Neary and Woods [22] gave UTM(6,4), which simulate 2-tag systems and bi-
tag systems, respectively. These UTMs have the smallest value of m × n among
the ones so far found.

It is, of course, possible to have a universal reversible Turing machine (URTM)
by reversifying a UTM using the method of Bennett (Theorem 2.1) and then con-
verting it into a one-tape RTM. However, if we do so, m and n become very large.
In the case of URTM(m,n) with m states and n symbols, a method of simulating
cyclic tag systems [2] was used to have ones with small m and n (Sect. 7.3 of
[15]). Among them, URTM(10,8) has the smallest value of m × n.

3 Reversible Logic Element with Memory (RLEM)
A reversible logic element with memory (RLEM) [13] is a kind of a reversible
finite automaton having output symbols as well as input symbols, which is also
called a reversible sequential machine of Mealy type. In the following, we use
RLEMs rather than reversible logic gates for composing RTMs.

Definition 3.1. A sequential machine (SM) M is defined by M = (Q,Σ,Γ, δ),
where Q is a finite set of states, Σ and Γ are finite sets of input and output symbols,
and δ : Q × Σ → Q × Γ is a move function (see Fig. 2 (a)). If δ is injective, it is
called a reversible sequential machine (RSM).

To use an SM as a logic element, we interpret it as the one with decoded
input/output ports (Fig. 2 (b)), i.e., for each input symbol, there is a unique input
port to which a signal (or a particle) is given. It is also the case for the output
symbols. Therefore, signals should not be given to two or more input ports at the
same time.

An RLEM is an RSM that satisfies |Σ| = |Γ|. When connecting many RLEMs
to form an RLEM-circuit, each output port of an RLEM can be connected to at
most one input port of another (or may be the same) RLEM. Furthermore, two or
more output ports should not be connected to one input port. Therefore, neither
branching (i.e., fan-out of an output) nor merging of signal lines is permitted. See
Sect. 3.5.1 of [15] for the precise definition of an RLEM-circuit.

Among RLEMs, two-state RLEMs are particularly important, since they are
simple yet powerful (see Sect. 3.4). In the following, we use a specific RLEM, a
rotary element (RE), to compose RTMs. This is because the operation of RE is
intuitively easy to understand, and RTMs can be constructed by it very simply.

(a)

(b)

t t +1

p q

p q

ai s j
State State✲ ✲ ✲ ✲

✲

✲

✲

✲

✲

✲

.

.

.

.

.

.

.

.

.

.

.

.

a1

ai

am

.

.

.

.

.

.

.

.

.

.

.

.

s1

s j

sn

✲

✲

✲

✲

✲

✲

.

.

.

.

.

.

.

.

.

.

.

.

a1

ai

am

.

.

.

.

.

.

.

.

.

.

.

.

s1

s j

sn

t t

Figure 2: (a) A sequential machine with δ(p, ai) = (q, s j), and (b) an interpreta-
tion of it as a module having decoded input ports and output ports

3.1 Rotary element (RE), a typical RLEM
A rotary element (RE) [13] is a two-state RLEM that has four input ports and four
output ports, and is depicted as in Fig. 3. Intuitively, an RE has a rotatable bar
inside, and an incoming signal is controlled by the bar. It takes either of the two
states, state V or state H, depending on the direction of the bar. If the direction of
a coming signal is parallel to the bar, the signal goes straight ahead, and the state
does not change (Fig. 4 (a)). If the direction of a coming signal is orthogonal to
the bar, the signal turns right, and the state changes (Fig. 4 (b)).

s
✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w

s
✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w

State V State H

Figure 3: Two states of a rotary element (RE)

t t +1 t t +1

s
✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w ✉
⇒ s

✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w

✉
s

✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w ✉
⇒ s

✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w ✉
(a) (b)

Figure 4: Operations of an RE. (a) Parallel case, and (b) orthogonal case

3.2 Constructing reversible sequential machines using REs
We can construct any RSM using only REs. To do so, we introduce a circuit
module called an RE-column. RSMs are composed of it systematically.

3.2.1 RE-column, a module for building RSMs

An RE-column of degree n is shown in Fig. 5, which has n + 1 REs. We assume,
in a resting state, it is in the state (a) or (b) of Fig. 5, where all the REs except the
bottom are in the state V. It has 2n input ports a1, . . . , an, b1, . . . , bn, and 2n output
ports s1, . . . , sn, t1, . . . , tn. If a signal is given to one of the input ports, the module
will take a state other than those of (a) and (b). However, as we shall see, the
module will become again the state (a) or (b) when the signal goes out from it.
Therefore, an RE-column behaves as if it is a two-state RSM. That is to say, the
states (a) and (b) are macroscopic states 0 and 1 of the RE-column.

s
s
s
s
s
s❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

❄

✛

✻

✲ ✲

✲ ✲

✲ ✲

✲ ✲

✲ ✲

✛✛

✛✛

✛✛

✛✛

✛✛

a1

ai

an

b1

bi

bn

t1

ti

tn

s1

si

sn

...

...

...

...

s
s
s
s
s
s❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

❄

✛

✻

✲ ✲

✲ ✲

✲ ✲

✲ ✲

✲ ✲

✛✛

✛✛

✛✛

✛✛

✛✛

a1

ai

an

b1

bi

bn

t1

ti

tn

s1

si

sn

...

...

...

...

(a) (b)

Figure 5: RE-column of degree n. (a) State 0, and (b) state 1

Table 1: The move function of an RE-column of degree n. Here, i ∈ {1, . . . , n}

Input
Present state ai bi

0 0 si 1 si

1 0 ti 1 ti

The move function of the RE-column as a two-state RSM is shown in Table 1.
In the following, we examine how the circuit works for the four cases of state-
input pairs: (0, ai), (1, ai), (0, bi), and (1, bi), where i ∈ {1, . . . , n}.

First, consider the case where the state is 0 (Fig. 5 (a)) and a signal is given
to ai. By the signal from ai, the i-th RE changes its state from V to H. Then the
signal moves downward through the (n − i + 1) REs. At the bottom of the column
the signal makes a U-turn, and goes upward through the (n − i + 1) REs. At the
i-th RE, the signal turns right and changes the RE’s state from H to V. Finally the
signal goes out from the port si. In this case the RE-column keeps the state 0.

Second, consider the case where the state is 1 (Fig. 5 (b)) and a signal is given
to ai. As in the first case, the signal sets the i-th RE to the state H, and then moves
downward. At the bottom RE, the signal makes a right-turn, and changes the state
of the RE to V. The signal goes upward along the left vertical line, and reaches the
north input of the top RE. It moves downward through the (i − 1) REs, and makes
a right-turn at the i-th RE, restoring the RE’s state to V. Finally the signal goes out
from the port ti. In this case the RE-column changes the state from 1 to 0.

Third, consider the case where the state is 0 and a signal is given to bi. The
signal sets the i-th RE to the state H, and moves upward through the (i − 1) REs.
Then the signal goes downward along the right vertical line, and reaches the east
input of the bottom RE. It changes the state of the bottom RE to H, and moves
upward through the (n − i) REs. The signal makes a right-turn at the i-th RE, and
restores its state to V. Finally the signal goes out from the port si. In this case the
RE-column changes the state from 0 to 1.

Fourth, consider the case where the state is 1 and a signal is given to bi. As
in the third case, the signal sets the i-th RE to the state H, and reaches the east
input of the bottom RE. The signal goes out from the west output of the bottom
RE without changing its state. It moves upward along the left vertical line, and
reaches the north input of the top RE. It makes a right-turn at the i-th RE, restoring
the RE’s state to V. Finally the signal goes out from the port ti. In this case the
RE-column keeps the state 1.

3.2.2 Composing RSMs using RE-columns

We can systematically compose any RSM out of RE-columns. The composing
method is explained by the following example of an RSM M0.

M0 = ({q1, q2, q3}, {c1, c2, c3}, {d1, d2, d3}, δ0)

The move function δ0 is given in Table 2.
Fig. 6 shows the circuit that simulates M0. It consists of three RE-columns of

degree 3. The j-th RE-column corresponds to the j-th state q j of M0. The i-th row
except the bottom row corresponds to the input symbol ci and the output symbol
di. If the state of M0 is q j, then the state of the j-th RE-column is set to 1, while
the other RE-columns are set to 0. Fig. 6 shows that M0 is in the state q3.

For example, assume an input signal is given to the port c2. Since the first
two RE-columns are in the state 0, the signal goes rightward through these RE-
columns without changing their states. At the third RE-column, the signal changes
the RE-column’s state from 1 to 0, and then comes out from the west output port
of the second RE, which is labeled by q3c2. This port is connected to the east input
port of the third RE of the second RE-column labeled by q2d3. By this, the state
of the second RE-column changes from 0 to 1. The signal appears from the east
output port of the third RE in the second RE-column. Since the third RE-column
is now in the state 0, the signal finally goes out from the port d3. By above, the
operation δ0(q3, c2) = (q2, d3) is simulated. Other cases are similar to this case.

Table 2: The move function δ0 of an RSM M0

Input
Present state c1 c2 c3

q1 q2 d2 q3 d1 q1 d2

q2 q3 d2 q2 d1 q1 d3

q3 q3 d3 q2 d3 q1 d1

r

r

r

r

❄

❄

❄

✻

✻

✻

❄

✛

✻

✲

✲

✲

✛

✛

✛

r

r

r

r

❄

❄

❄

✻

✻

✻

❄

✛

✻

✲

✲

✲

✛

✛

✛

r

r

r

r

❄

❄

❄

✻

✻

✻

❄

✛

✻

✲

✲

✲

✛

✛

✛

✲

✲

✲

q1 q2 q3

c1

c2

c3

d1

d2

d3

q1c1

q1c2

q1c3

q2c1

q2c2

q2c3

q3c1

q3c2

q3c3

q1d1

q1d2

q1d3

q2d1

q2d2

q2d3

q3d1

q3d2

q3d3

Figure 6: An RSM M0 composed only of RE [15]

Generally, for any given RSM M = ({q1, . . . , qn}, {c1, . . . , cl}, {d1, . . . , dm}, δ),
we can construct a circuit composed of RE-columns that simulates M in the fol-
lowing way. First prepare n RE-columns of degree r = max{l,m}, and connect
the si output of the j-th RE-column to the ai input of the (j + 1)-st RE-column
(i ∈ {1, . . . , r}, j ∈ {1, . . . , n − 1}). Also connect ci to ai of the first RE-column

(i ∈ {1, . . . , l}), and si of the n-th RE-column to di (i ∈ {1, . . . ,m}). For all qh, q j,
ci, and dk, if δ(qh, ci) = (q j, dk), then connect the west output of the RE at (i, h) to
the east input of the RE at (k, j). By this, M is correctly simulated.

3.3 Constructing reversible Turing machines using REs

Using only REs, we can compose any two-symbol RTM with a rightward infinite
tape. A composing method was first given in [13]. Then it was revised in [15],
and it is further revised here. An RTM is constructed by assembling two kinds of
functional modules. They are a tape cell module and a state module. Note that the
tape cell module uses an RE-column as a submodule.

3.3.1 Tape cell module

A tape cell module is a circuit shown in Fig. 7. It simulates one tape square of an
RTM. Connecting infinite number of copies of it, a tape unit is obtained as shown
in the right part of Fig. 12.

SLc
′ ✛

SLI
′ ✛

SL

SRc
′ ✛

SRI

SR

R1
′ ✛

R0
′ ✛

W1

W0

s
s

s
s

s

s
s
s
s s

❄

❄

❄

❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻ ✻

✲
✛

✲

✲
✛

✲

✲
✛

✲
✛

✲

✛

✲

❄

r1

r0

w1

w0

SLc

SLI

SL
′✲

SRc

SRI
′✲

SR
′✲

R1

R0

W1
′✲

W0
′✲

SLc
′ ✛

SLI
′ ✛

SL

SRc
′ ✛

SRI

SR

R1
′ ✛

R0
′ ✛

W1

W0

s
s

s
s

s

s
s
s
s s

❄

❄

❄

❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻ ✻

✲
✛

✲

✲
✛

✲

✲
✛

✲
✛

✲

✛

✲

❄

r1

r0

w1

w0

SLc

SLI

SL
′✲

SRc

SRI
′✲

SR
′✲

R1

R0

W1
′✲

W0
′✲

(a) (b)

Figure 7: Tape cell module for two-symbol RTMs. The state (a) shows that the
head is not on this cell, and (b) shows that the head is on this cell

The tape cell keeps the information whether the head of the RTM is on this
cell or not in its left part, which is an RE-column of degree 8 (Fig. 5). If the RE-
column is in the state 0 (i.e., its bottom RE is in the state V), then the head is not
here (Fig. 7 (a)). If it is in the state 1 (i.e., its bottom RE is in the state H), then
the head is here (Fig. 7 (b)).

A tape symbol s ∈ {0, 1} is stored in the RE indicated by s in Fig. 7, where
0 and 1 are represented by the states V and H, respectively. The right part of the
tape cell is, in fact, a one-bit memory (Fig. 8) having the move function given in
Table 3. It has two input ports w0 and w1, and two output ports r0 and r1. Assume
the present state is s (∈ {0, 1}). If a signal is given to wt (t ∈ {0, 1}), then the new
symbol t is written in it, and the old symbol s is read-out from the output port rs.
Thus, a write operation always accompanies a read operation.

s
✻

w0
❄

w1

✛

r0

✛r1

✛

s
✻

w0
❄

w1

✛

r0

✛r1

✛

(a) (b)

Figure 8: One-bit memory for a tape cell module. (a) State 0, and (b) state 1

Table 3: The move function of the one-bit memory given in Fig. 8

Input
Present state w0 w1

0 0 r0 1 r0

1 0 r1 1 r1

The tape cell module has ten input ports corresponding to ten kinds of input
symbols listed in Table 4. They are interpreted as instructions to the tape unit or
response signals to the finite control of an RTM. For each input symbol, there is
a corresponding output symbol, which is indicated by the symbol with ′, and thus
the tape cell has ten input ports and ten output ports. Making an infinite number of
copies of it, and connecting them to form a rightward infinite array, we can obtain
a tape unit for the RTM. To the left of the tape unit a finite control of an RTM will
be connected. We assume there is only one tape cell whose RE-column is in the
state 1 in the initial setting, and thus there is only one head. Giving a signal to the
tape unit, read/write and head-shift operations are performed.

Table 4: Ten kinds of symbols for the tape cell module and their meanings [15]

Symbol Instruction/Response Meaning

W0 Write 0 Instruction of writing the tape symbol 0 at the head position.

By this instruction, read operation is also performed

W1 Write 1 Instruction of writing the tape symbol 1 at the head position.

By this instruction, read operation is also performed

R0 Read 0 Response signal telling the read symbol at the head is 0

R1 Read 1 Response signal telling the read symbol at the head is 1

SL Shift-left Instruction of shift-left operation

SLI Shift-left immediate Instruction of placing the head on this cell by shifting left

SLc Shift-left completed Response (completion) signal of shift-left operation

SR Shift-right Instruction of shift-right operation

SRI Shift-right immediate Instruction of placing the head on this cell by shifting right

SRc Shift-right completed Response (completion) signal of shift-right operation

First, consider the case where the head is not on this tape cell (Fig. 7 (a)).
Since its RE-column is in the state 0, a signal from the input port W0, W1, R0,
R1, SL, SR, SLc, or SRc simply goes to the output port W0′, W1′, R0′, R1′, SL′,
SR′, SLc′, or SRc′, respectively, without changing its state (see Table 1). It means
that these signals skip tape cells having no head. Note that processing of a signal
SLI or SRI in this case is discussed later.

Second, consider the case where the head is on this cell (Fig. 7 (b)). The first
subcase is that an input signal Wt (t ∈ {0, 1}) is given, which is for writing the
tape symbol t in this tape cell. We assume the one-bit memory in its right part is
in the state s. The signal changes the state of the RE-column to 0, and appears on
the line wt in Fig. 7 (see Table 1). Then the state of the one-bit memory changes
to t, and the signal appears on the line rs (see Table 3). This signal restores the
RE-column to the state 1, and finally goes out from the port Rs′. Hence, the
writing operation also performs a reading operation to keep reversibility of the
tape cell. The signal Rs′ moves leftward through tape cells having no head, and
finally reaches the finite control of the RTM. Note that if an RTM needs to read a
tape symbol, it is performed by sending a signal to the input port W0 of the tape
unit. By this, the tape unit gives a response signal at the output port Rs′, and the
tape symbol at the head position is cleared to 0. Thus, this is a destructive readout.

The second subcase is that a signal is given to the input port SL of the tape cell
with a tape head, which will shift the tape head to the left. This signal changes the
RE-column to the state 0, and goes out from the port SLI′ (Table 1). This signal is
sent to the left-neighboring tape cell. If the latter tape cell receives an input signal
SLI, then it sets the state of the RE-column to 1, and sends an output signal SLc′

to the left. By such a process, shift-left operation is performed correctly.
The third subcase is that a signal is given to the input port SR of the tape cell

with a tape head, which will shift the tape head to the right. The ports SR, SRI,
and SRc are similar to the ports SL, SLI, and SLc, except that an output signal
SRI′ is sent to the right-neighboring tape cell.

By above, we can see that read/write and head-shift operations are correctly
performed by a tape unit.

3.3.2 State module

Before introducing a state module we first explain a subroutine call mechanism.
A subroutine is a black box having at least one calling (i.e., input) port, and at
least one return (i.e., output) port (Fig. 9) that satisfies the following: If a calling
signal is given to one of the calling ports, a return signal eventually comes out
from one of the return ports. No signal should be given to a calling port before
a return signal for the previous calling signal comes out. Here, to make a simple
subroutine-call mechanism using REs, we restrict both the numbers of calling
ports and return ports to be at most two. If there are two calling ports, say c0 and
c1, we can give two kinds of information 0 and 1, regarded as an input argument, to
the subroutine. Likewise, if there are two return ports r0 and r1, we can obtain two
kinds of information 0 and 1, regarded as an output value, from the subroutine.

A tape unit acts as three subroutines by suitably specifying calling and return
ports. The first one is the subroutine having the calling ports W0 and W1, and the
return ports R0′ and R1′. The second has the calling port SL, and the return port
SLc′. The third has the calling port SR, and the return port SRc′.

Black box

✲c
1

✲c
0

✛r
1

✛r
0

Figure 9: Subroutine. Here, it has two input ports c0 and c1 for calling it from a
main routine, and two output ports r0 and r1 for returning to the main routine

s s s r
0✛ ✛ ✛

✲ c
0

r
1

✲ ✲ ✲

c
0

1
c

0

i c
0
n

❄ ❄ ❄

r
0

1
r

0

i r
0
n

✻ ✻ ✻
· · · · · ·

❄ ❄ ❄
r

1

1
r

1
i

r
1
n

· · · · · ·

✲ c
1

✻ ✻ ✻

c
1

1
c

1
i

c
1
n

Figure 10: Subroutine caller that can be used from n points of a main routine

A subroutine caller is a mechanism for calling one subroutine from many
points of a main routine. Fig. 10 is a caller for a subroutine having calling ports
c0 and c1, and return ports r0 and r1. In this figure, cs

i (i ∈ {1, . . . , n}, s ∈ {0, 1}) is
the i-th calling port for the main routine with the input s, and rt

i (i ∈ {1, . . . , n}, t ∈
{0, 1}) is the i-th return port for the main routine with the output t.

Initially, all the REs in Fig. 10 are set to the state H. If a signal is given to the
port cs

i (i ∈ {1, . . . , n}, s ∈ {0, 1}), then the state of the i-th RE changes to V, and
the signal goes out from the port cs. If the signal returns via the port rt (t ∈ {0, 1}),
then the state of the i-th RE is restored to H, and then the signal goes out from the
port rt

i . In this way, n points of the main routine can share the same subroutine.
Note that if a subroutine has only one calling port or only one return port, then
unnecessary lines in the caller are removed.

A state module simulates one state, say qi, of an RTM. It is shown in Fig. 11.
It is composed of three submodules, which are write-and-merge, head-shift, and
read-and-branch submodules. This figure shows the case where qi is a right-shift
state. The case for a left-shift state is similar. Because of the reversibility condi-
tion (Definition 2.2), shift direction is uniquely determined by the state. Note that
a state module for an initial state consists only of a read-and-branch submodule,
and that for a halting state consists of write-and-merge and head-shift submodules.

If the number of states of an RTM is m, then prepare m state modules, and
connect them in a row to make a finite control of the RTM. At the left end of the
array, SLc′, SRc′, R1′ and R0′ are connected to SL, SR, W1 and W0, respectively.

s
✲

✛❄

✻

s
✲

��

✻

❅❅

s
✲

✛❄

Write-and-
merge

Head-
shift

Read-and-
branch

✛SLc′· · ·

SL· · ·✲

✛SRc′· · ·

SR· · ·✲

✛R1′· · ·
W0· · ·✲

✛R0′· · ·
W1· · ·✲

SLc

✲ SL′

SRc

✲ SR′

R1
✲ W0′

R0
✲ W1′

0qi 1qi

❄
qi1

❄
qi0

Figure 11: State module for a right-shift state qi of an RTM

Write-and-merge submodules and read-and-branch submodules in the m state
modules form a subroutine caller that share the subroutine having the calling ports
W0 and W1, and the return ports R0′ and R1′ in the tape unit. By this, read/write
operations on the tape unit can be performed in each state. Head-shift submodules
of the right-shift states also form a subroutine caller that share the subroutine
having the calling port SR, and the return port SRc′ in the tape unit. Likewise,
head-shift submodules of the left-shift states form a subroutine caller that share
the subroutine having the calling port SL, and the return port SLc′.

Let T = (Q, {0, 1}, q0, F, 0, δ) be a two-symbol RTM. First consider how the
write-and-merge submodule works. Assume [p, s, 0, d, qi], [p′, s′, 1, d, qi] ∈ δ.
Note that it also works well for the case only one of these two quintuples exists.
We further assume that the write-and-merge operation is done just after a read-
and-branch operation that performs a destructive readout. Thus, the tape symbol
at the head position is now 0. If the submodule receives a signal from the input
port 0qi (1qi, respectively), then it sends a calling signal to the subroutine from
the port W0′ (W1′) to perform a writing operation. Since the old symbol at the
head position is 0, the submodule receives a signal from the return port R0 in both
cases of writing 0 and 1. By this, two different signal paths of writing 0 and 1 are
reversibly merged into one, and the signal is sent to the head-shift submodule.

The head-shift submodule works as follows. If it receives a signal from the
write-and-merge submodule, it sends a signal to the calling port SL′ or SR′, by
which shifting is performed in the tape unit. It receives a signal from the return
port SLc or SRc. Then, the signal is sent to the read-and-branch submodule.

If the read-and-merge submodule receives a signal from the head-shift sub-
module, it sends a signal to the calling port W0′ of the tape unit. Then the tape
unit sends back a response signal via the return port R0 or R1 depending on the
read symbol. The submodule finally gives a signal to the port qi0 or qi1. By above,
read-and-branch operation is performed.

State transitions of the RTM is realized by connecting state modules in the
following way. If there is a quintuple [qi, s, t, d, q j] ∈ δ, then the output port qis of
the state module for qi is connected to the input port tq j of the state module for q j.

3.3.3 Composing RTMs

Assembling tape cells and state modules, and connecting them as explained above,
we can systematically compose a circuit made of REs that simulates any given
two-symbol RTM. The circuit for the RTM Tparity in Example 2.1 is shown in
Fig. 12. If we give a signal to the port “Start”, then it is sent to the state module
for the initial state. By this, Tparity begins to compute. If Tparity halts, then the
signal from the state module corresponding to the accepting or rejecting state is
sent to the port “Accept” or “Reject” showing that the computation is completed.

s
✲

✛
❄

s
✲

✛
❄

✻

s
✲

��

✻

❅ ❅

s
✲

✛
❄

s
✲

✛
❄

✻

s
✲

��

✻

❅ ❅

s
✲

✛
❄

s
✲

✛
❄

✻

s
✲

��

✻

❅ ❅

s
✲

✛
❄

✻

s
✲

��

✻

❅ ❅

s s s s s s s s s
s

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻

❄

✛ ✻
✻

✲
✛

✲ ✲
✛

✲ ✲
✛

✲
✛

✲

✛

✲

❄

s s s s s s s s s
s

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻

❄

✛ ✻
✻

✲
✛

✲ ✲
✛

✲ ✲
✛

✲
✛

✲

✛

✲

❄

s s s s s s s s s
s

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻

❄

✛ ✻
✻

✲
✛

✲ ✲
✛

✲ ✲
✛

✲
✛

✲

✛

✲

❄

··
·

H
ea

d
0

1
0

q
0

q
1

q
2

q
a

q
r

✲
S

ta
rt
•✛

A
cc

ep
t ✛

R
ej

ec
t [q

0
,0
,1
,R

,q
1
]

[q
1
,0
,1
,L
,q

a
]

[q
1
,1
,0
,R

,q
2
]

[q
2
,0
,1
,L
,q

r]

[q
2
,1
,0
,R

,q
1
]

✛S
L

c ✲
S

L
′

✛S
R

c ✲
S

R
′

✛
R

1 ✲
W

0
′

✛
R

0 ✲
W

1
′

Figure 12: RTM Tparity composed of REs

3.4 Universality of RLEMs
There are infinitely many RLEMs even if we consider only two-state RLEMs.
We use a special graphical representation for two-state RLEMs. Fig. 13 shows
the representation of RLEM 3-10, where “3” means that it has three input/output
symbols, and “10” is its serial number in the class of 3-symbol RLEMs. Two
boxes in Fig. 13 indicate its two states. The dotted and solid lines give the input-
output relation in each state. If an input signal goes through a dotted line, the state
does not change (Fig. 14 (a)). If it goes through a solid line, the state changes
(Fig. 14 (b)). Note that RE can be also represented by such a figure, but we
employ Fig. 3 for ease in understanding.

�
�
�

✲
✲
✲

✲
✲
✲a

b
c

x
y
z

State 0

❍❍❍✲
✲
✲

✲
✲
✲a

b
c

x
y
z

State 1

Figure 13: Two states of RLEM 3-10.

t

�
�
�

✲
✲
✲

✲
✲
✲

•
State 0

⇒
t +1

�
�
�

✲
✲
✲

✲
✲
✲

•
State 0

t

❍❍❍✲
✲
✲

✲
✲
✲

•
State 1

⇒
t +1

�
�
�

✲
✲
✲

✲
✲
✲

•
State 0

(a) (b)

Figure 14: Operations of RLEM 3-10. (a) The case where the state does not
change, and (b) the case where the state changes

Among RLEMs there are universal RLEMs in the following sense.

Definition 3.2. An RLEM R is called universal if any RSM can be realized by a
circuit composed only of R.

As we have already seen in Sect. 3.2.2, RE is universal. We can observe that
RLEM 3-10 is also universal, since RE can be composed of RLEM 3-10 as in
Fig. 15 [20]. This figure shows the state H of an RE. By complementing the states
of the bottom four RLEMs, we have the state V of an RE. In Fig. 15, it is easy to
see that if a signal is given to the port e (w, respectively), then it goes out from the
port w′ (e′) in two steps without changing the state of the circuit. This is a parallel
case (Fig. 4 (a)). On the other hand, if a signal is given to the port n, then the
circuit evolves as shown in Fig. 16. The signal finally goes out from the port w′,
and the states of the bottom four RLEMs are complemented. This is an orthogonal
case (Fig. 4 (b)). In such a way, RE is correctly simulated.

s
✲ ✲

✛✛

✻

✻❄

❄

n n
′

e

e
′

s
′

s

w
′

w

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

❍❍❍ �
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′

Figure 15: A circuit composed of RLEM 3-10 that simulates RE [20].

t = 0

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

❍❍❍ �
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′

✇
t = 1

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

❍❍❍ �
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′✇

t = 2

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′

✇

t = 3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′

✇

t = 4

�
�
�

�
�
�

❍❍❍ �
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′✇

t = 5

�
�
�

�
�
�

❍❍❍ �
�
�

�
�
�

�
�
�

�
�
�

�
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′

✇

t = 6

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′

✇

t = 7

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′✇

t = 8

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

�
�
�

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′✇

t = 9

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

❍❍❍

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′✇

t = 10

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❍❍❍ �
�
�

❍❍❍

✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲
✲

✲ ✲

✲

✲ ✲ ✲✲

✲ ✲✲ ✲

✲ ✲✲ ✲

n e s w

s
′

w
′

n
′

e
′✇

Figure 16: Process of simulating RE by RLEM 3-10 when the state of RE changes

Furthermore, we can compose RLEM 3-10 out of RLEMs 2-3 and 2-4 (Fig. 17).
The circuit that simulates RLEM 3-10 is shown in Fig. 18 [10]. Hence, the set
{RLEM 2-3, RLEM 2-4} is universal, though each of RLEM 2-3 and RLEM 2-
4 has been proved to be non-universal [21]. This result is useful for realizing a
universal RLEM such as RE in a reversible environment having a very simple
microscopic law of evolution (see Sect. 4.5).

✲
✲

✲
✲

✟✟
✟✟a

b

x

y

State 0

✲
✲

✲
✲a

b

x

y

State 1

✲
✲

✲
✲a

b

x

y

State 0

✲
✲

✲
✲❍❍❍❍

a

b

x

y

State 1

RLEM 2-3 RLEM 2-4

Figure 17: RLEMs 2-3 and 2-4

3-10

State 0

�
�
�

✲ ✲
✲ ✲
✲ ✲a

b
c

x
y

z

3-10

State 1

❍❍❍✲ ✲
✲ ✲
✲ ✲a

b
c

x
y

z

2-4

0

2-3

0

✟✟✟✲✲
✲

✲
✲

✲

✲

a

b
c

x

y

z

2-4

1

❍❍❍

2-3

1

✲✲
✲

✲
✲

✲

✲

a

b
c

x

y

z

Figure 18: RLEM 3-10 is simulated by a circuit made of RLEMs 2-3 and 2-4
[10]

It is known that every non-degenerate two-state RLEM having three or more
I/O symbols is universal. It was proved by showing the fact that, for any one of
these RLEMs, there are circuits composed only of it that simulate RLEMs 2-3 and
2-4 [20]. Note that, here, a degenerate RLEM means that it is either equivalent to
an RLEM with fewer I/O symbols, or equivalent to connecting wires (see [15] for
its precise definition). Hence, we consider only nondegenerate RLEMs. Fig. 19
summarizes the results.

Every non-degenerate 2-state

k-symbol RLEM k-n (k > 2)

RLEM 2-17

❍❍✟✟

RLEM 2-3

✟✟
RLEM 2-4

❍❍

RLEM 2-2

✟✟ ❍❍

✁
✁
✁
✁
✁
✁

✁
✁✁☛

❆
❆
❆
❆
❆
❆
❆
❆❆❯✁

✁
✁
✁
✁
✁
✁
✁✁✕

❆
❆
❆
❆
❆

❆
❆
❆❆❑✻

�
��✠

❅
❅❅❘
✲

✛

❄

✻

❅
❅❅❘

�
��✠

❅
❅

❅■

�
�
�✒

✬

✫

✩

✪

✬

✫

✩

✪

Universal

Non-universal

Figure 19: Universality/non-universality of two-state RLEMs [15]

4 Simple Reversible Cellular Automaton
As a reversible environment, we use a reversible cellular automaton having very
simple local transition rules, which can be seen as a microscopic law of evolution.

4.1 Elementary square partitioned CA (ESPCA)
A 4-neighbor square partitioned cellular automaton (SPCA) is a two-dimensional
CA whose square cell is divided into four parts as in Fig. 20 (a). The next state of
a cell is determined depending on the present states of the four adjacent parts of
the neighboring cells (not depending on whole the states of the four neighboring
cells) as shown in Fig. 20 (b). Note that the next state of a cell does not depend
on the previous state of the cell itself.

Definition 4.1. A 4-neighbor square partitioned cellular automaton (SPCA) is
defined by

P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f).

Here, Z2 is the set of all points with integer coordinates where cells are placed.
The items T , R, B and L are non-empty finite sets of states of the top, right, bottom
and left parts of a cell. The set of states of a cell is thus Q = T × R × B × L. The
quadruple ((0,−1), (−1, 0), (0, 1), (1, 0)) is a neighborhood. The item f : Q → Q
is a local (transition) function.

b

l

t

r ✲ t
′
r
′

b
′l

′

(a) (b)

Figure 20: (a) Cellular space of a 4-neighbor square partitioned cellular automa-
ton (SPCA), and (b) its local transition rule f (t, r, b, l) = (t′, r′, b′, l′)

If f (t, r, b, l) = (t′, r′, b′, l′) holds for (t, r, b, l), (t′, r′, b′, l′) ∈ Q, this relation is
called a local transition rule of P. It is also indicated as in Fig. 20 (b). The local
function f is thus defined by a set of local transition rules.

Definition 4.2. Let P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f) be an
SPCA. A configuration of P is a function α : Z2 → Q. The set of all configurations
of P is denoted by Conf(P), i.e., Conf(P) = {α |α : Z2 → Q}. Let prT : Q → T
be the projection function that satisfies prT (t, r, b, l) = t for all (t, r, b, l) ∈ Q. The
projection functions prR : Q → R, prB : Q → B and prL : Q → L are defined
similarly. The global function F : Conf(P) → Conf(P) of P is defined as the one
that satisfies the following.

∀α ∈ Conf(P),∀(x, y) ∈ Z2 :
F(α)(x, y) = f (prT (α(x, y − 1)), prR(α(x − 1, y)), prB(α(x, y + 1)),

prL(α(x + 1, y)))

Definition 4.3. An SPCA P is called reversible if its global function is injective.

As for the notions related to reversibility, see Sect. 10.3 of [15] for the details.
The next Lemma shows that injectivity of the global function of a PCA is equiva-
lent to that of the local function [15, 19]. By this, we can easily obtain a reversible
CA, since it is sufficient to design a PCA whose local function is injective.

Lemma 4.1. Let P be an SPCA. Its global function F is injective if and only if its
local function f is injective.

Here, we define the simplest subclass of SPCAs such that its local function
is rotation-symmetric, and each of four parts has only two states. It is called
an elementary SPCA (ESPCA) as in the case of a one-dimensional elementary
cellular automaton (ECA) [28]. We first define the notion of rotation-symmetry.

Definition 4.4. Let P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f) be an
SPCA. The SPCA P is called rotation-symmetric (or isotropic) if the following
conditions (1) and (2) hold.

(1) T = R = B = L

(2) ∀ (t, r, b, l), (t′, r′, b′, l′) ∈ T × R × B × L :
f (t, r, b, l) = (t′, r′, b′, l′)⇒ f (r, b, l, t) = (r′, b′, l′, t′)

Definition 4.5. Let P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f) be an
SPCA. We say P is an elementary triangular partitioned cellular automaton (ES-
PCA), if T = R = B = L = {0, 1}, and it is rotation-symmetric.

Since an ESPCA is rotation-symmetric, its local function f : {0, 1}4 → {0, 1}4

is defined by only six local transition rules, which are described by the following
six values.

f (0, 0, 0, 0), f (0, 0, 1, 0), f (0, 0, 1, 1), f (1, 0, 1, 0), f (0, 1, 1, 1), f (1, 1, 1, 1)

Here, f (0, 0, 1, 0), f (0, 0, 1, 1), f (0, 1, 1, 1) ∈ {0, 1}4. However, f (1, 0, 1, 0) ∈
{(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)} and f (0, 0, 0, 0), f (1, 1, 1, 1) ∈
{(0, 0, 0, 0), (1, 1, 1, 1)}, since it is rotation-symmetric. Hence, there are 163 × 4 ×
22 = 65, 536 ESPCAs in total.

Reading the 4-bit values of f (0, 0, 0, 0), f (0, 0, 1, 0), f (0, 0, 1, 1), f (1, 0, 1, 0),
f (0, 1, 1, 1), f (1, 1, 1, 1) as six binary numbers, we can express an ESPCA by a
6-digit hexadecimal identification number uvwxyz. For example, if f (0, 0, 1, 0) =

(t, r, b, l), then v = 23t + 22r + 21b + 20l. An ESPCA with the identification number
uvwxyz is denoted by ESPCA uvwxyz.

4.2 A particular ESPCA P0

Here, we consider a particular reversible ESPCA with the identification number
01caef. Hereafter, it is denoted by P0 for short. It is first studied in [17]. Fig. 21
shows a pictorial representation of the six local transition rules of ESPCA 01caef.
Though its local function is simple, its behavior is complex. Therefore, it is gen-
erally difficult to follow evolution processes of P0 using only paper and pencil. To
see its evolution processes, we created an emulator of P0 on the general purpose
CA simulator Golly [27]. The emulator files and pattern files for P0 are available
in [16].

It is easy to see that the local function of P0 is injective. Therefore it is a
reversible ESPCA. An ESPCA is called conservative if the number of particles
(i.e., state 1) is conserved in each local transition rule. It is an analog of various
conservation laws in physics. We can see that ESPCA P0 is conservative.

✲

0

•
✲ •

1

•
• ✲ ••

c

•

•
✲ •

•
a

•
•• ✲ •••

e

•
•

•
• ✲ ••••

f

Figure 21: Local function defined by the six local transition rules of a particular
reversible and conservative ESPCA 01caef, which is denoted by P0 hereafter

4.3 Useful patterns in ESPCA P0

A pattern is a finite segment of a configuration (see Sect. 10.2.1 of [15] for its
precise definition). A periodic pattern is one such that the same pattern appears at
the same position after some time steps. The periodic pattern given in Fig. 22 is
called a blinker. It is of period 2. Though there are many kinds of periodic patterns
in P0, a blinker is particularly useful among them as we shall see in Sect. 4.4

t = 0

••

t = 1

•
•

t = 2

••

Figure 22: Blinker in P0 [17]. It is of period 2

A space-moving pattern is one such that the same pattern appears at a differ-
ent position after some time steps. In P0 there are many kinds of space-moving
patterns of various periods [17]. In fact, if we start from a random-like pattern,
then we often observe that space-moving patterns appear.

The pattern having the shortest period among the space-moving patterns so
far found is called a glider (Fig. 23). It travels one cell diagonally in 12 steps. It
will be used as a signal when constructing reversible Turing machines, since it has
interesting and desirable properties as described in Sect. 4.4.

The pattern shown in Fig. 24 is called a block. It is a stable pattern, which
is a periodic pattern of period 1, and thus does not change its pattern if no other
pattern touches it. In the following, it will be used only for writing comments
and indicating a border of a logic element in the cellular space. Hence, it has no
functional role for composing reversible Turing machines.

t = 0

••
••

t = 1

•
• •

•

t = 2

• •
• •

t = 3

• ••
•

t = 4

•
••

•

t = 5

• •
••

t = 6

•• •
•

t = 7

•
••

•

t = 8

••
• •

t = 9

•
••
•

t = 10

•
•

•
•

t = 11

•
• •

•

t = 12

••
••

Figure 23: Glider in P0 [17]. It is of period 12

t = 0

•• •••• ••

Figure 24: Block in P0 [17]. It is a stable pattern

4.4 Three useful phenomena in ESPCA P0

We make three experiments of interacting a glider with a blinker. However, each
of these experiment needs a large number of steps. In particular the third experi-
ment takes more than 2000 steps. Therefore, it is not possible to show correctness
of the results in this paper. They are verified by computer simulation [16].

The first experiment is shown in Fig. 25. Colliding a glider with a blinker in
this manner, a right-turn of a glider is realized.

The second experiment is in Fig. 26. By this, a glider makes a U-turn. It is
used to test if a blinker exists or not at a specified position. It is also used to
reversibly merge two signal paths into one (it is explained in Sect. 4.5).

The third experiment is in Fig. 27. By this, the position of the blinker is shifted
by 6 cells, and the glider makes a right-turn. Using this phenomenon, a kind of

memory device is realized, where the memory states are kept by the positions of
the blinker. At the same time, it can test if a blinker exists at a specified position,
and can merge two signal paths into one.

t = 0

••

••
••

t = 164

•
•• •• •

t = 327

•
•

••
••

Figure 25: Right-turn of a glider in P0 [17]

t = 0

•
•

••
••

t = 70

•• •• •
•

t = 140

•
•

••
••

Figure 26: U-turn of a glider in P0 [17]

t = 0

•
•

••
••

t = 1062

• • ••
•

•

t = 2121

••

••
••

Figure 27: Shifting a blinker by a glider in P0 [17]

4.5 Composing RLEMs in ESPCA P0

Using three useful phenomena given in Sect. 4.4, we implement RLEMs in P0.
Since it is difficult to make RE directly, we first compose RLEMs 2-3 and 2-4.
Using them, we make RLEM 3-10, and then RE. In [17], RLEM 4-31 is imple-
mented in P0, whose pattern size is smaller than that of RE. However, here, we
use RE, since its operation is easier to understand. Note that the essential parts of
RLEMs constructed here consist only of blinkers, since blocks are used to write
comments and to indicate borders of the RLEMs.

RLEM 2-3

P
Q

R

S

U1

U2

•• ••
•• •• •• ••
•• •• •• ••

•• •• •• ••
•• •• •• ••

•• •• •• •• •• •••• •• •• ••

•• •••• ••
•• •• •• •••• •• •• •• ••

•• •• •••• •• •• •• •• ••
•• •• •• •• •• •• •• ••
•• •• •• •• •• ••

•• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• • •• ••
•• •• •• •• • •• •••• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• ••

•• •••• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• ••
•• •• • •• •• •• •• •• ••

•• •• • •• •• •• ••
•• •• • •• ••

•• •• • •• •• •• ••
•• •• •• •• •• ••

•• •• •• •• •• ••
•• •• • •• ••

•• •• • • •• •••• •• • •• ••
•• •• • •• •••• •• • •• ••

•• •• • •• •••• •• • • •• ••
•• •• • •• •••• •• •• ••

•• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• • •• •• • •• •••• •• •• •• •• •• • •• •• • •• ••

•• •• • •• •• •• •• •• •• •• •• • •• •••• •• • •• •• •• •• • •• ••
•• •• • •• •••• •• • •• ••

•• •• • •• •••• •• • •• ••
•• •• •• •••• •• • •• ••

•• •• • • •• •••• •• • •• ••
•• •• •• •••• •• •• ••

•• •• • • • • • •• •••• •• • • • • • •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• • •• ••
•• •• • • • •• •••• •• • • •• ••

•• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• ••

•• •• • •• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• •• •• •• •• •• •• •• ••

•• •• •• •••• •• •• ••
•• •• • •• •••• •• • •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •••• ••

Figure 28: RLEM 2-3 implemented in P0

The pattern shown in Fig. 28 simulates RLEM 2-3. There are many blinkers
in this pattern. One is used as a position marker for keeping the memory state 0 or
1, while others are used for turning a signal. Two small circles near the center of
the pattern show possible positions of the position marker. If the marker is at the
left (right, respectively) position, we regard that the RLEM is in the state 0 (1).

First, consider the case where the state is 0 and an input signal is given to the
port a as in this figure. The signal makes a U-turn at the U-turn gadget U1 since the
state is 0. Then it goes to the gadget U2, and again makes a U-turn passing through
Q. Note that U2 is used to reversibly merge the path with that of the second case.
Finally the signal goes out from the port x.

Second, consider the case where the state is 0 and an input signal is given to
the port b. At P the signal shifts the position marker to the right, and makes a
right-turn. Thus, the state changes to 1. Then, the signal goes out from the output
port x via the point Q. This signal path is merged with that of the first case at Q.

Third, consider the case where the state is 1 and an input signal is given to the
port a. In this case, the signal goes out from the output port y via S and R without
interacting the position marker.

Fourth, consider the case where the state is 1 and an input signal is given to
the port b. The signal goes straight ahead at the point P. Then, it shifts the position
marker to the left and makes a right-turn at R. Thus, the state changes to 0. Finally
it goes out from y. This signal path is merged with that of the third case at R.

Note that, in an RLEM, an incoming signal interacts with the state of the
RLEM, not with other signals. Therefore, there is no need of synchronizing two
or more signals as in the case of logic gates. Therefore, it greatly simplifies im-
plementation of RLEMs and connecting them in P0

RLEM 2-4

The pattern shown in Fig. 29 simulates RLEM 2-4. As in the case of RLEM 2-3,
one blinker near the center of the pattern is used as a position marker for keeping
the memory state 0 or 1. If the marker is in the right (left, respectively) small
circle, we regard that the RLEM is in the state 0 (1).

First, consider the case where the state is 0 and an input signal is given to the
port a. The signal makes a U-turn at U2. Then it goes to U1, and again makes a
U-turn passing through T. Finally the signal goes out from the port x.

Second, consider the case where the state is 1 and an input signal is given to
the port b. At R the signal goes straight ahead. Then it passes through the points
S and T. Finally it goes out from the port x. This signal path is merged with that
of the first case at T.

Third, consider the case where the state is 1 and an input signal is given to the
port a. The signal goes straight ahead at Q. Then, at P it shifts the position marker

P
Q

R

S

T
U1

U2

•• •• •• •••• •• •• ••
•• •••• ••

•• •• •• •••• •• •• ••

•• •••• ••
•• •• •• •••• •• •• ••

•• •• •• ••
•• •• •• •• •• ••
•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• •• •• •• ••

•• •• • •• •• •• ••
•• •• •• ••

•• •• •• •• •• ••
•• •• •• •• •• •• •••• •• •• •• ••

•• ••
•• •• •• •••• •• •• ••

•• •• •• ••
•• •• •• •• •• ••
•• •• •• •• •• ••
•• •• •• •• •• •• • •• ••
•• •• •• •• •• •• • •• ••
•• •• •• •• • •• ••
•• •• •• •• •• •• • •• ••
•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •••• •• • •• ••

•• •• • • •• •••• •• • •• ••
•• •• • •• •••• •• • •• ••

•• •• • •• •••• •• • • •• ••
•• •• • •• •••• •• •• ••

•• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• •• • •• •• •• •• •• •••• •• • •• •• • •• •• •• •• •• ••

•• •• • •• •• •• •• •• •• •• •• • •• •••• •• • •• •• •• •• • •• ••
•• •• • •• •••• •• • •• ••

•• •• • •• •••• •• • •• ••
•• •• •• •••• •• • •• ••

•• •• • • •• •••• •• • •• ••
•• •• •• •••• •• •• ••

•• •• • • • • • •• •••• •• • • • • • •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• • •• ••
•• •• • • • •• •••• •• • • •• ••

•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• • •• •••• •• •• •• •• •• •• •• •• •• •• •• • •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• • •• •••• •• •• •• •• •• •• •• •• •• • •• ••

•• •• •• •••• •• •• ••
•• •• • •• •••• •• • •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •••• ••

Figure 29: RLEM 2-4 implemented in P0

to the right, and makes a right-turn. By this, the state changes to 0. Finally it goes
out from the port y.

Fourth, consider the case where the state is 0 and an input signal is given to
the port b. At R the signal shifts the position marker to the left, and makes a right-
turn. By this, state changes to 1. Then, it passes through P, and finally goes out
from y. In this case, the signal path is merged with that of the third case at P.

It should be noted that the move function of RLEM 2-4 is the inverse of that
of RLEM 2-3. The move function of RLEM 2-3 is as follows.

(0, a) 7→ (0, x), (0, b) 7→ (1, x), (1, a) 7→ (1, y), (1, b) 7→ (0, y)
Its inverse is as follows, and is isomorphic to that of RLEM 2-4.

(0, x) 7→ (0, a), (1, x) 7→ (0, b), (1, y) 7→ (1, a), (0, y) 7→ (1, b)

In [18], it is shown that in a reversible triangular partitioned CA (ETPCA), a
pattern for the “inverse functional module” can be easily obtained from the orig-
inal pattern by a simple transformation. This is due to the time-symmetry [18]
of reversible ETPCAs. A similar property also holds for reversible ESPCAs (but
its details are omitted here). By this, the pattern in Fig. 29 is obtained by putting
blinkers at the mirror image positions of blinkers of the pattern of in Fig. 28.

RLEM 3-10

Combining the patterns for RLEMs 2-3 and 2-4 to form the circuit shown in
Fig. 18, we can easily obtain a pattern that simulates RLEM 3-10 as in Fig. 30.

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •••• •• • • •• ••

•• •• • • •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• ••
•• •• •• •• •• •••• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• • •• ••

•• •• • •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• • •• •••• •• • •• ••
•• •• •• ••

•• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• • • •• •• •• ••
•• •• •• •• • • •• •• •• ••
•• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• • •• •• •• •••• •• • •• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• • •• •••• •• • •• ••
•• •• •• •• •• •• •• •••• •• •• •• •• •• •• ••

•• •• •• •• • •• •• •• •• •• •• •• •• • •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• • •• •• •• •• •• •• •• •• • •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• • • •• ••
•• •• •• •• •• •• • • •• •• •• ••
•• •• •• •• • •• •• •• •• •• •• •• •• • •• •• •• •• •• ••
•• •• •• •• •• •• • •• •• •• •• •• •• •• •• • •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• • •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• •• • •• •• •• •• •• •• •• ••

•• •• • •• •• •• •• •• •• •• •• • •• •••• •• • •• •• • •• •• •• •• • •• •• • •• ••
•• •• •• •• • • •• •• •• •••• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •••• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••
•• •• • •• •• •• •• • •• •••• •• • •• •• •• •• • •• ••

•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••

•• •• •• •• • • •• •• •• •• • • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••
•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••

•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• • • •• •• •• •• • • •• •• •• ••
•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••• ••
•• •• •• •• • •• •• • •• •• •• •• •• •• •• •• •• •• •• •• • •• •• • •• •• •• •••• •• •• •• • •• •• • •• •• •• •• •• •• •• •• •• •• •• •• • •• •• • •• •• •• ••

•• •• •• •• • •• •• •• •• •• •• •• •• • •• •• •• •• • •• •• •• •• •• •• •• •• • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• •• • •• •• •• •• • •• •• •• ••
•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••

•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••

•• •• •• •• • • •• •• •• •• • • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• • • • • • •• •• •• •• • • • • • •• •• •• •••• •• •• •• • • • • • •• •• •• •• • • • • • •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••
•• •• •• •• • • • •• •• •• •• • • • •• •• •• •••• •• •• •• • • •• •• •• •• • • •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• • •• •• •• •• • •• •• •• •••• •• •• •• • •• •• •• •• • •• •• •• ••

•• •••• ••
•• •• •• •• • • •• •• •• •••• •• •• •• • • •• •• •• ••

•• •••• ••
•• •••• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •••• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •••• •• •• •• •• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

•• •• •• •••• •• •• ••
•• •• •• •••• •• •• ••

Figure 30: RLEM 3-10 implemented in P0 composed of RLEMs 2-3 and 2-4

RE

Placing eight copies of the pattern of RLEM 3-10 (Fig. 30) and connecting them
to form the circuit shown in Fig. 15, we can obtain a pattern for RE. However,
since it is very large (2,000 × 2,000), its figure is omitted here (the pattern can be
seen using the file 08_RE_by_3-10.rle in [16] on Golly).

4.6 Making RTMs in ESPCA P0

Putting copies of the patterns of RE in P0 at the positions of REs in Fig. 12, and
connecting them appropriately, we have a configuration of P0 that simulates the
RTM Tparity of Fig. 12. Any RTM can be implemented in P0 in this manner.

Fig. 31 shows the configuration for the RTM Tpower in Example 2.2 simulated
on Golly [16]. It takes more than one billion (1,137,250,105) steps to have an
answer for the unary input n = 4. Therefore, when simulating the computing
process of Tpower on Golly, its speeding-up mode should be used.

Figure 31: RTM Tpower implemented in ESPCA P0 simulated on Golly [16]. Each
small square is a pattern that simulates RE

5 Concluding Remarks
We saw that even from a very simple reversible microscopic law, reversible com-
puting machines like RTMs can be realized by a construction method shown in
Fig. 1. Here we used a particular reversible ESPCA P0 as a reversible environ-
ment. However, there are many possibilities of other simple reversible CAs, or
other frameworks of reversible environments. For example, in [18], a reversible
elementary triangular partitioned cellular automaton (ETPCA) is used to construct
RTMs. An important fact observed in this paper is that only a few useful reversible
phenomena (shown in Sect. 4.4) are sufficient to compose reversible computing
machines. We expect such a fact also holds in various reversible environments.

Acknowledgements
The author is grateful to the reviewers for their valuable comments. He also ex-
press his thanks to the development team of Golly [27].

References
[1] Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532

(1973). https://doi.org/10.1147/rd.176.0525

[2] Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40
(2004)

[3] Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253
(1982). https://doi.org/10.1007/BF01857727

[4] Gurevich, Y.: Reversify any sequential algorithm. Bulletin of EATCS 134, 42–65
(2021)

[5] Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Trans.
Amer. Math. Soc. 117, 285–306 (1965). https://doi.org/10.2307/1994208

[6] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Prentice Hall (2006)

[7] Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc.
36th FOCS. pp. 66–75. IEEE (1997). https://doi.org/10.1109/SFCS.1997.646094

[8] Landauer, R.: Irreversibility and heat generation in the computing process. IBM J.
Res. Dev. 5, 183–191 (1961). https://doi.org/10.1147/rd.53.0183

[9] Lecerf, Y.: Machines de Turing réversibles — récursive insolubilité en n ∈ N de
l’équation u = θnu, où θ est un isomorphisme de codes. Comptes Rendus Hebdo-
madaires des Séances de L’académie des Sciences 257, 2597–2600 (1963)

https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1007/BF01857727
https://doi.org/10.2307/1994208
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1147/rd.53.0183

[10] Lee, J., Peper, F., Adachi, S., Morita, K.: An asynchronous cellular automa-
ton implementing 2-state 2-input 2-output reversed-twin reversible elements. In:
Proc. ACRI 2008 (eds. H. Umeo, et al.), LNCS 5191. pp. 67–76 (2008). https:
//doi.org/10.1007/978-3-540-79992-4_9

[11] Margolus, N.: Physics-like model of computation. Physica D 10, 81–95 (1984).
https://doi.org/10.1016/0167-2789(84)90252-5

[12] Morita, K.: Universality of a reversible two-counter machine. Theoret. Comput. Sci.
168, 303–320 (1996). https://doi.org/10.1016/S0304-3975(96)00081-3

[13] Morita, K.: A simple reversible logic element and cellular automata for reversible
computing. In: Proc. MCU 2001 (eds. M. Margenstern, Y. Rogozhin), LNCS 2055.
pp. 102–113 (2001). https://doi.org/10.1007/3-540-45132-3_6

[14] Morita, K.: A deterministic two-way multi-head finite automaton can be converted
into a reversible one with the same number of heads. In: Proc. RC 2012 (eds.
R. Glück, T. Yokoyama), LNCS 7581. pp. 29–43 (2013). https://doi.org/10.1007/

978-3-642-36315-3_3

[15] Morita, K.: Theory of Reversible Computing. Springer, Tokyo (2017). https://doi.
org/10.1007/978-4-431-56606-9

[16] Morita, K.: Data set for simulating a reversible elementary square partitioned cel-
lular automaton with the ID number 01caef on Golly. Hiroshima University Institu-
tional Repository, http://ir.lib.hiroshima-u.ac.jp/00051974 (2021)

[17] Morita, K.: Computing in a simple reversible and conservative cellular automa-
ton. In: Proc. First Asian Symposium on Cellular Automata Technology (eds. S.
Das, G.J. Martinez) AISC 1425, Springer pp. 3–16 (2022). https://doi.org/10.1007/

978-981-19-0542-1_1

[18] Morita, K.: Gliders in the Game of Life and in a reversible cellular automaton. In:
The Mathematical Artist – A Tribute To John Horton Conway (eds. S. Das, S. Roy,
K. Bhattacharjee). Springer (in press)

[19] Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. Trans. IEICE E72, 758–762 (1989), http://ir.lib.
hiroshima-u.ac.jp/00048449

[20] Morita, K., Ogiro, T., Alhazov, A., Tanizawa, T.: Non-degenerate 2-state reversible
logic elements with three or more symbols are all universal. J. Multiple-Valued
Logic and Soft Computing 18, 37–54 (2012)

[21] Mukai, Y., Ogiro, T., Morita, K.: Universality problems on reversible logic elements
with 1-bit memory. Int. J. Unconventional Computing 10, 353–373 (2014)

[22] Neary, T., Woods, D.: Four small universal Turing machines. Fundam. Inform. 91,
123–144 (2009). https://doi.org/10.3233/FI-2009-0036

[23] Rogozhin, Y.: Small universal Turing machines. Theoret. Comput. Sci. 168, 215–
240 (1996). https://doi.org/10.1016/S0304-3975(96)00077-1

https://doi.org/10.1007/978-3-540-79992-4_9
https://doi.org/10.1007/978-3-540-79992-4_9
https://doi.org/10.1016/0167-2789(84)90252-5
https://doi.org/10.1016/S0304-3975(96)00081-3
https://doi.org/10.1007/3-540-45132-3_6
https://doi.org/10.1007/978-3-642-36315-3_3
https://doi.org/10.1007/978-3-642-36315-3_3
https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-4-431-56606-9
http://ir.lib.hiroshima-u.ac.jp/00051974
https://doi.org/10.1007/978-981-19-0542-1_1
https://doi.org/10.1007/978-981-19-0542-1_1
http://ir.lib.hiroshima-u.ac.jp/00048449
http://ir.lib.hiroshima-u.ac.jp/00048449
https://doi.org/10.3233/FI-2009-0036
https://doi.org/10.1016/S0304-3975(96)00077-1

[24] Shannon, C.E.: A universal Turing machine with two internal states. In: Automata
Studies. pp. 157–165. Princeton University Press, Princeton, NJ (1956)

[25] Toffoli, T.: Computation and construction universality of reversible cellular
automata. J. Comput. Syst. Sci. 15, 213–231 (1977). https://doi.org/10.1016/

S0022-0000(77)80007-X

[26] Toffoli, T.: Reversible computing. In: Automata, Languages and Programming (eds.
J.W. de Bakker, J. van Leeuwen), LNCS 85. pp. 632–644 (1980). https://doi.org/10.
1007/3-540-10003-2_104

[27] Trevorrow, A., Rokicki, T., Hutton, T., et al.: Golly: an open source, cross-platform
application for exploring Conway’s Game of Life and other cellular automata. http:
//golly.sourceforge.net/ (2005)

[28] Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)

https://doi.org/10.1016/S0022-0000(77)80007-X
https://doi.org/10.1016/S0022-0000(77)80007-X
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
http://golly.sourceforge.net/
http://golly.sourceforge.net/

	1 Introduction
	2 Reversible Turing Machine (RTM)
	2.1 Definitions and examples
	2.2 Computational universality of RTMs

	3 Reversible Logic Element with Memory (RLEM)
	3.1 Rotary element (RE), a typical RLEM
	3.2 Constructing reversible sequential machines using REs
	3.2.1 RE-column, a module for building RSMs
	3.2.2 Composing RSMs using RE-columns

	3.3 Constructing reversible Turing machines using REs
	3.3.1 Tape cell module
	3.3.2 State module
	3.3.3 Composing RTMs

	3.4 Universality of RLEMs

	4 Simple Reversible Cellular Automaton
	4.1 Elementary square partitioned CA (ESPCA)
	4.2 A particular ESPCA P0
	4.3 Useful patterns in ESPCA P0
	4.4 Three useful phenomena in ESPCA P0
	4.5 Composing RLEMs in ESPCA P0
	4.6 Making RTMs in ESPCA P0

	5 Concluding Remarks

