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Formal Languages via Theories over Strings:
An Overview of Some Recent Results

Joel D. Day * Vijay Ganesh † Florin Manea ‡

Abstract

In this note, we overview a series of results that were obtained in [16, 15].
In these papers, we have investigated the properties of formal languages ex-
pressible in terms of formulas over quantifier-free theories of word equa-
tions, arithmetic over length constraints, and language membership predi-
cates for the classes of regular, visibly pushdown, and deterministic context-
free languages. As such, we have considered 20 distinct theories and decid-
ability questions for problems such as emptiness and universality for formal
languages over them. In this note, we first present the relative expressive
power of the approached theories. Secondly, we discuss the decidability
status of several important decision problems, some of them with practical
applications in the area of string solving, such as the emptiness and the uni-
versality problem. To this end, it is worth noting that the emptiness problem
for some theory is equivalent to the satisfiability problem over the corre-
sponding theory. Finally, we discuss the problem of deciding whether a
language expressible in one theory is also expressible in another one, and
show several undecidability results; these investigations are particularly rel-
evant in the context of normal forms for string constraints, and, as such, they
are relevant to both the practical and theoretical side of string solving.

The current note is heavily based on the contents of [16, 15], and the
readers are encouraged to check these references for complete details.

1 Introduction
Logical theories based on strings (or words) over a finite alphabet have been an
important topic of study for decades, as described, for instance, in the two fun-
damental handbooks in the area of combinatorics on words [33, 32] as well as
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in the volumes 1 and 3 of the handbook of formal languages [39, 40]. Connec-
tions to arithmetic (see, e.g.,Q̃uine [38]) and fundamental questions about free
(semi)groups underpinned interest in logics involving concatenation and equality.
Combining these two topics leads to word equations: expressions α = β where α
and β are terms obtained by concatenating variables and concrete words over a fi-
nite alphabet. For example, if x and y are variables, and our alphabet is Σ = {a, b},
then xaby = ybax is a word equation. Its solutions are variable-substitutions uni-
fying the two sides: x→ bb, y→ b would be one such a solution for the previous
example; other solutions are x→ bn+1, y→ bn, for n ≥ 0.

The existential theory of a finitely generated free semigroup consists of for-
mulas made up of Boolean combinations of word equations. In fact, the problem
of deciding whether such a formula is true is equivalent to determining satisfia-
bility of word equations, since any such formula can be transformed into a single
word equation without disrupting satisfiability (see [33, 27]). While it was origi-
nally hoped that the problem of deciding if a word equation has a solution could
facilitate an undecidability proof for Hilbert’s famous Tenth problem, by provid-
ing an intermediate step connecting Diophantine equations to the computations of
Turing Machines, Makanin showed in 1977 that satisfiability of word equations
is algorithmically decidable [35], putting an end to these hopes, but also open-
ing a new line of research. Since then, several improvements to the algorithm
proposed by Makanin have been proposed. From a complexity point of view,
Plandowski [37] showed that this satisfiability problem can be solved in PSPACE,
which has been refined to nondeterministic linear space by Jeż via the Recom-
pression technique [25]. On the other hand, Schulz [41] showed that the problem
remains decidable even when the variables are constrained by regular languages,
limiting the possible substitutions (see Chapter 12 of [33]). On the other hand, if
length constraints (requiring that some pairs of variables are substituted for words
of the same length) are permitted, then the (un)decidability of the problem is a
long-standing open problem.

Word equations, and logics involving strings more generally, have remained a
topic of interest within the Theoretical Computer Science community, in partic-
ular in the areas of Combinatorics on Words and Formal Languages, where they
play a fundamental role. More recently, word equations became interesting to the
Formal Methods community as well. This interest can be attributed to increasing
popularity and influence of software tools called string-solvers, which seek to al-
gorithmically solve constraint problems involving strings [6, 22]. In this setting,
a string constraint formalizes a property of an unknown string (or string variable),
and the string solvers try to determine whether strings (over a potentially infinite
domain) exist which satisfy logical combinations of string constraints of various
types. Word equations, regular language membership, and comparisons between
lengths are all among the most prominent building blocks of string constraints



(as described in [6]), and when combined are sufficient to model several others
(see, for instance, some examples in [16]). Various other string constraints are
discussed in, e.g., [14]. String-solvers are also useful in other areas like Database
Theory, particularly for evaluating path queries in graph databases [7] and in con-
nection with Document Spanners [19, 18]. Recently, to overcome some difficulties
related to solving string constraints over infinite domains, a finite-model version
of the theory of concatenation was considered [20].

Many string-solvers are now available [26, 8, 11, 36, 28, 1, 43, 9, 2] (see
also [6, 22] for an overview). However, the underlying task of determining the sat-
isfiability of string constraints remains a challenging problem and a barrier to more
effective implementations. Motivated in part by the applications in string-solving,
and by the desire to make progress on seemingly very difficult open theoretical
problems, some results already exist addressing the computability, complexity,
and expressibility of combinations of string constraints. [34, 21, 29, 31, 30] iden-
tify restrictions on word equations which result in a decidable satisfiability prob-
lem even when length constraints are present. Several further ways of augmenting
word equations (i.e., additional predicates or constraints on the variables), are
shown to be undecidable in [13, 14, 12, 23].

Nevertheless, despite results such as those mentioned above, little is known
about the true expressive power of word equations and of string logics involving
word equations in conjunction with other common types of string constraints. A
greater understanding in this regard would be of great help in settling open prob-
lems (such as for whether satisfiability for word equations with length constraints
is decidable), and also with devising string solving strategies: often simply finding
a solution to one constraint is not enough and the set of solutions must be consid-
ered more generally to account for other constraints which might be present, or
to determine that no solution exists. Moreover, a common tactic is to rewrite
constraints into some normal form before solving and understanding when and
how this can be done also requires knowledge of the relative expressive power of
subsets of constraints.

Our work [16] filled some gaps in the understanding of the properties and
expressivity of some of the most important combinations of string constraints by
considering languages expressible in the sense of [27]. In this regard, our results
can be seen as extending [27] to a more general (and more practical) setting, where
word equations are combined with language membership constraints and length
constraints.

The framework: In [16], a landscape of string-based logics was considered,
incorporating various types of atoms inspired by and strongly related to promi-
nent varieties of string-constraints. In particular, we considered logics with dif-
ferent combinations of the following four types of predicates: equality between
strings, concatenations of strings, membership of formal languages, and linear



arithmetic over string-lengths. In total, this covered 20 distinct families of log-
ical theories (each family containing a different theory for each possible under-
lying alphabet Σ). We will overview them in detail in Section 3. Based on [27]
(and partly on [10], where relation-definability by logics over strings was studied
in a database-theory centred framework), we have analysed these logics from a
formal language perspective by looking at the set of values a variable may take
while preserving satisfiability of a formula. Specifically, given a formula f from a
quantifier-free logical theory T, we say that the language expressed by a variable
x occurring in f is the set of concrete values w such that substituting x for w in f
yields a satisfiable formula. In the general case, we can think of the property that
the formula f defines via the variable x. However, since we deal with logics in
which x is substituted for finite strings, we get a formal language.

In our approach, we were interested both in the expressive power of the log-
ical theories with respect to what languages they can express, and in their com-
putational properties with respect to canonical decision problems within formal
languages such as emptiness, universality, equivalence and inclusion.

Getting more into details, the 4 types of fundamental predicates we allowed
in these logics cover many of the most prominent types of string constraints, as
listed in [6]. While predicates related to equality between strings, concatenations
of strings, and linear arithmetic over string-lengths do not need more explana-
tions, given the motivation presented above, a discussion is in order with respect
to our choice of language membership predicates. In this case, they are consid-
ered for the classes of regular, deterministic context-free, or as an intermediary
between the two, visibly pushdown languages. While there are many classes of
languages we might have chosen to consider between regular and deterministic
context-free, there are several advantages to choosing the visibly pushdown lan-
guages in particular. Firstly, they exhibit an attractive balance of being compu-
tationally reasonable (they have many of the desirable closure and algorithmic
properties of the regular languages) while simultaneously being powerful enough
to provide a reasonable model in many verification and software analysis appli-
cations, in line with our motivations from string-solving. Moreover, since they
directly generalise the regular languages, but with sufficient memory capabilities
to model certain types of length comparisons, the combination of word equations
and visibly pushdown language constraints generalises the combination of word
equations with both length and regular constraints. The latter is of particular inter-
est in the context of string-solving, but is also a case for which the decidability of
satisfiability remains open and is likely to be difficult to resolve. In [16], we have
shown that the satisfiability for the former is undecidable and thus that already
a very limited extension to regular and length constraints is enough to reach this
negative result.

The results: Firstly, a comparison of the relative expressive power of the dif-



ferent theories was obtained. On the one hand, we managed to group certain fam-
ilies together, where they express the same class of languages. We have shown
that adding linear arithmetic over string-lengths to a theory allowing only lan-
guage membership predicates for a class of languages with good language theo-
retic properties does not alter its expressive power. Thus, the theories in which
only regular language (or visibly pushdown language) membership predicates are
allowed and the theories in which length comparison is added to those member-
ship predicates are equivalent. While in the case of theories based on regular
language membership predicates we can also add concatenation without changing
the expressive power, we have shown that adding this operation to theories based
on visibly pushdown language membership predicates strictly increases their ex-
pressive power, and they can express all recursively enumerable languages. More-
over, we also discuss several separation results between the classes of language
expressed by various theories. One of the ways this can be achieved (see [16] for
a detailed discussion) is by non-trivially extending pumping-lemma style tools for
word equations from [27] to our more general settings, as well as by developing a
novel technique for showing inexpressibility by word equations with both regular
and length constraints. The overall hierarchy of classes of languages expressible
in our theories is depicted in Figure 2.

While these results seem already interesting from a language-theoretic point
of view, they are also relevant for the emptiness problem for classes of languages
expressed by our theories, which is equivalent to the satisfiability problem for for-
mulas over those theories. As such, our results allowed us to non-trivially extend
the state-of-the-art related to the satisfiability of string constraints. In particular,
we settled the previously mentioned interesting case in which word equations are
combined with visibly pushdown language membership constraints. When com-
bined with existing results, our results establish a relatively complete description
of when the emptiness problem is (un)decidable (see upper part of Figure 2). The
cases left open are the combinations of word equations with length constraints
with or without regular constraints, which remain long-standing open problems.

Further, we have considered the universality problem and a related variant,
namely the subset universality problem in which we want to test whether a lan-
guage is exactly S ∗ for a subset S of the underlying alphabet. Again, our results
filled in gaps in the knowledge and allowed us to paint a comprehensive picture
of the decidability status of these problems for our theories (see the right part of
Figure 2). Since the universal language is expressible in all our theories, in com-
bination with results from Section 4 and from the literature, we have obtained a
complete picture for the equivalence and inclusion problems. However, a substan-
tial further benefit (and a large part of our motivation for studying this problem)
is that it allows us to use Greibach’s theorem in numerous instances (as stated in
Theorem 8) to establish further undecidability results (e.g., Theorems 10 and 9).



In particular, Theorem 10 is part of a larger line of thought, developed in Sec-
tion 6, in which we have considered the question of when it is (un)decidable if
a language expressed in one theory can be expressed in another. Such problems
are particularly interesting in the context of practical string solving because they
essentially ask whether a property defined by one kind of string constraint can
be algorithmically converted to another. Often, it is the combinations of different
kinds of string constraints which lead to high complexities in solving, so being
able to rewrite constraints in different forms can be a powerful pre-processing
technique. We also identify some interesting cases where Greibach’s theorem is
not applicable, and thus where other approaches are needed (e.g., Theorem 11).
The potential implications our results might have in practice are discussed in [16].

The structure of the presentation: Our aim in [16, 15] was to obtain a more
complete understanding of the computational properties and expressivity of lan-
guages expressed by various combinations of commonly occurring types of string
constraints. Naturally, we were able to account for several cases by recalling, or
extending existing results from literature, so at the beginning of each section, we
give a single theorem that summarizes existing results and discuss their conse-
quences. This allowed us to subsequently focus on the most interesting remaining
cases, many of which we were able to resolve by drawing on a range of techniques
rooted in formal languages, automata theory, combinatorics on words and com-
putability theory. The results reported in [16, 15] were a substantial improvement
of the state of understanding of the theories considered, particularly with respect
to their expressive power. In those cases, we were unable to resolve, we have
identified several interesting new open problems, which we list here as well.

The proofs of the results overviewed in this paper are given in [16, 15].

2 Preliminaries
Let N = {1, 2, 3, . . .} and N0 = {0} ∪ N. Let Z denote the set of integers. Let
Σ = {a1, a2, . . . , an} be an alphabet. We denote by Σ∗ the set of all words over
Σ including the empty word, which we denote ε. In other words, Σ∗ is the free
monoid generated by Σ under the operation of concatenation. For words u, v ∈ Σ∗

we denote their concatenation either by u · v or simply as uv. Given a set of
variables X = {x1, x2, . . .} and an alphabet Σ, a word equation is a pair (α, β) ∈
(X ∪ Σ)∗ × (X ∪ Σ)∗, usually written as α = β. A solution to a word equation is a
substitution of the variables for words in Σ∗ such that both sides of the equation
become identical. Formally, we model solutions as morphisms. That is, we say
a substitution is a (homo)morphism h : (X ∪ Σ)∗ → Σ∗ satisfying h(a) = a for
all a ∈ Σ, and a solution to a word equation α = β is a substitution h such that
h(α) = h(β).



We refer to [24] for standard definitions and well-known results from formal
language theory regarding, for example, recursively enumerable languages (RE),
regular languages (REGLang), context free languages (CFLang), deterministic
context-free languages (DCFLang), finite and pushdown automata, etc.

In addition, we refer to [3, 4, 5] for background on visibly pushdown automata
and visibly pushdown languages (VPLang) but also give here the main definitions.
More precisely, a pushdown alphabet Σ̃ is a triple (Σc,Σi,Σr) of pairwise-disjoint
alphabets known as the call, internal and return alphabets respectively. A visibly
pushdown automaton (VPA) is a pushdown automaton for which the stack opera-
tions (i.e. whether a push, pop or neither is performed) are determined by the input
symbol which is read. In particular, any transition for which the input symbol a
belongs to the call alphabet Σc, must push a symbol to the stack while any transi-
tion for which a ∈ Σr must pop a symbol from the stack unless the stack is empty
and any transition for which a ∈ Σi must leave the stack unchanged. Acceptance
of a word is determined by the state the automaton is in after reading the whole
word. The stack does not need to be empty for a word to be accepted. A Σ̃-visibly
pushdown language is the set of words accepted by a visibly pushdown automaton
with pushdown alphabet Σ̃. A language L is a visibly pushdown language (and is
part of the class VPLang) if there exists a pushdown alphabet Σ̃ such that L is a
Σ̃-visibly pushdown language. The class VPLang is a strict superset of the class
of regular languages and a strict subset of the class of deterministic context-free
languages, which retains many of the nice decidability and closure properties of
regular languages. In particular, it is shown in [3] that VPLang is closed under
union, intersection and complement and moreover that the emptiness, universal-
ity, inclusion and equivalence probelms are all decidable for VPLang.

By a theory, we mean a set T = { f1, f2, . . .} of formulas adhering to given syn-
tax and to which we associate a particular semantics. The theories we consider
(introduced in Section 3) consist of quantifier-free formulas. The typical com-
putational questions one might consider with respect to a given theory T are the
following:

• Satisfiability: given formula f ∈ T, does there exist an assignment of the
variables in f such that f becomes true under the associated semantics? and

• Validity: given formula f ∈ T, is f true under all assignments of the vari-
ables occurring in f ?

The questions we overview here have a slightly different flavour: given for-
mula f ∈ T and variable x occurring in f , we are interested in properties of the set
of all values w for which there is an assignment mapping x to w which makes the
formula true. Thus, we consider the set of concrete values w for which f remains
satisfiable once the variable x has been replaced by w. Since we shall focus on



theories in which variables represent words, we refer to the set of all such values
w as the language expressed by the variable x in the formula f . In this respect,
we extend the notion of languages expressible by word equations [27] to arbitrary
string-based logical theories. We say a language L is expressed by a formula if
it contains a variable x such that L is the language expressed by x in f . We say
that L is expressible in a theory T if there exists a formula f ∈ T and variable x
occurring in f such that L is expressed by x in f .

We shall discuss typical decision problems such as emptiness and universality
for languages expressed by formulas in a given theory T. In this context, the
input is a formula f ∈ T and a variable x occurring in f . So, e.g, in the case of
emptiness, we might be given a formula x = aba ∧ x · y = ababba along with
the variable y, and we must decide whether the language Ly expressed by y in that
formula is the empty set or not. In this case, Ly = {bba} , ∅ so the answer is no.
Clearly, for any formula f and variable x, the emptiness problem for the language
expressed by x in f is equivalent to the satisfiability problem for f . Thus, we
consider a set of problems which directly generalise the satisfiability problem.

For theories containing word equations, we use and extend notions and results
from [27] to reason about (in)expressibility of languages, such as the notion of a
synchronising F-factorisation. The technical details about such factorisations can
be found in [27], as well as in [16].

3 Logical Theories Over Strings Constraints
In this section, we present a variety of logical theories encompassing the most
common kinds of string constraints (as overviewed in [6]). Consider three sets
of terms, defined as follows. Let X = {x1, x2, . . .} be an infinite set of string
variables. Let Σ be a finite alphabet. Let T Σ

str = X ∪ Σ∗ be the set of basic string
terms. Let T Σ

str,con = (X ∪ Σ)∗ be the set of extended string terms. Note that
T Σ

str,con is the closure of T Σ
str under the concatenation (·) operation. Let T Σ

arith =

{k0 + k1|s1| + k2|s2| + . . . + kn|sn| | n ∈ N0, ki ∈ Z, and si ∈ T
Σ
str} be the set of

length terms. We interpret |s| as the length of the string term s, so T Σ
arith is the set

of linear combinations of lengths of string terms. Note that since we can express
the length of a concatenation of string terms as a linear combination of lengths of
basic string terms, it is not a restriction the fact that si ∈ T

Σ
str rather than T Σ

str,con
(this allows us to consider theories containing length terms both with and without
concatenation). We construct three types of atoms from terms as follows:

(A1) Language membership constraints of the form s ∈ L where s ∈ T Σ
str(,con) and

L ⊆ Σ∗ is a formal language,

(A2) Length constraints of the form `1 = `2 where `1, `2 ∈ T
Σ
arith,



(A3) Word equations (string-equality constraints) of the form s1 = s2 where
s1, s2 ∈ T

Σ
str,con.

Formulas in our theories are constructed in general as follows:

(F1) Any atom is a well-formed formula,

(F2) If f1, f2 are well-formed formulas then ¬ f1 is a well-formed formula and
f1 ⊕ f2 is a well-formed formula for each ⊕ ∈ {∧,∨, =⇒ , ⇐⇒ }.

Note that all formulas are quantifier-free. The semantics associated with these
formulas are defined in the natural way: given a substitution for the variables
x1, x2, . . . for words in Σ∗, each string term evaluates to a word in Σ∗ (possibly
as the result of concatenating several smaller words in the case of extended string
terms). Each length term is a linear combination of lengths of strings and evaluates
to an integer. Atoms of type A1 evaluate to “true” if the string term s evaluates to
a word in the language L and false otherwise. Atoms of type A2 evaluate to true if
the two length terms `1, `2 evaluate to the same integer and false otherwise. Atoms
of type A3 evaluate to true if the string terms s1 and s2 evaluate to the same word
and false otherwise. Finally, Boolean combinations of the form F2 are evaluated
in the canonical way.

The most general logical theory we consider includes all of the above and
we consider language membership constraints s ∈ L where L is a deterministic
context-free language, given, for instance, as a deterministic push-down automa-
ton or a context-free grammar. However, we are not just interested in this theory
alone, rather we want to consider various sub-theories in order to compare their
expressive power and computability-related properties.

We have two ways of restricting expressive power. The first is to restrict the
types of terms/atoms we allow, while the second is to restrict the kind of languages
we allow in the language membership constraints (atoms of type A1). For the lat-
ter, we focus on three main possibilities: regular languages, visibly push-down
languages, and deterministic context-free languages. For technical completeness,
we can assume that all language constraints are given as automata (NFA, Visibly-
PDA, or Deterministic-PDA respectively), however, since we do not focus on pre-
cise complexity-related issues, equivalent language descriptors such as grammars
could equally be used. In particular, we might use simpler descriptors where con-
venient to do so and where it is obvious that an equivalent automaton could be
constructed.

We consider all combinations of atom-types A1, A2 and A3, and in each case
define versions in which only basic string terms fromT Σ

str are allowed and versions
in which concatenations of string terms (i.e. terms from T Σ

str,con) are allowed. Note
that whenever we allow word equations (so, atoms of type A3), we might as well



Theory Name A1-Atoms (s ∈ L) A2 A3 Example
REG s basic, L ∈ REGLang × × x1 ∈ a∗b∗ ∨ x1 ∈ {c}∗

VPL s basic, L ∈ VPLang × × x1 ∈ {anbn | n ∈ N}
DCF s basic, L ∈ DCFLang × × x1 ∈ {anb2n | n ∈ N}

REG + CON s extended, L ∈ REGLang × × x1abx2 ∈ (ab)∗ ∧ x2 ∈ b∗

VPL + CON s extended, L ∈ VPLang × × x1abx2 ∈ {anbn | n ∈ N}
DCF + CON s extended, L ∈ DCFLang × × x1cx2 ∈ {ucv | u, v ∈ {a, b}∗, |u| = |v|}
REG + LEN s basic, L ∈ REGLang X × x1 ∈ a∗ ∧ x2 ∈ b∗ ∧ |x1| = |x2|

VPL + LEN s basic, L ∈ VPLang X × x1 ∈ {anbn | n ∈ N} ∧ |x1| = 8
DCF + LEN s basic, L ∈ DCFLang X × x1∈{anb2n | n ∈ N}∨|x1|=3|x2|

REG+LEN+CON s extended, L ∈ REGLang X × x1x2∈a∗b∗∧ x2 ∈ b∗∧ |x1|= |x2|

VPL+LEN+CON s extended, L ∈ VPLang X × x1x2 ∈ {anbn | n ∈ N}∧|x1|= |x2|

DCF+LEN+CON s extended, L ∈ DCFLang X × x1x2 ∈ {anb2n | n ∈ N}∧|x2|=2|x1|

WE × × X x1abx2 = x2bax1

WE + REG s basic, L ∈ REGLang × X x1abx2 = x2bax1 ∧ x1 ∈ a∗

WE + VPL s basic, L ∈ VPLang × X x1 = x2x3∧x1 ∈ {anbn | n ∈ N}
WE + DCF s basic, L ∈ DCFLang × X x1 = x2x3∧x2 ∈ {anb2n | n∈N} ∧ x3∈c∗

WE + LEN × X X x1abx2 = x2bax1 ∧ |x1| = 2|x2|

WE+REG+LEN s basic, L ∈ REGLang X X x1x2 = x3 ∧ x1 ∈ a∗b∗ ∧ |x2| = |x3|

WE+VPL+LEN s basic, L ∈ VPLang X X x1x2 = x3∧x3∈{anbn | n∈N}∧|x1|= |x3|

WE+DCF+LEN s basic, L ∈ DCFLang X X x1x2 = x3∧x3∈{anb2n |n∈N}∧|x2|= |x3|

Figure 1: A list of all the theory-families addressed in the current work, along
side descriptions of the allowed atom-types and an example of a formula belong-
ing to that theory family, in the case that the underlying alphabet Σ = {a, b, c}.
Language membership constraints are given in shorthand for readability. In the
case of visibly pushdown languages, {anbn | n ∈ N} is a typical example under an
alphabet-partition Σ = (Σc,Σi,Σr) satisfying a ∈ Σc and b ∈ Σr. For each theory-
family, permitted atom-types are indicated by a X in the case of A2 and A3, and,
for A1-atoms, the class of languages and which kind of string terms are allowed
are written explicitly. Atom-types which are not permitted are indicated with ×.

allow concatenations of string terms. If we allow concatenations in word equation
terms, then we can model concatenation in all string terms anyway and if we were
to restrict equality between string terms to basic string terms only, then we could
easily eliminate all string equalities by direct substitution.

Moreover, we are not going to consider explicitly the case that only length
constraints (atoms of type A2) are allowed, since this reduces to the existential
fragment of Presburger arithmetic and is therefore not really a string-based logic.
With these exclusions, we are left with a total of 20 theories to consider; see
Figure 1. In fact, since the theories themselves depend on the underlying alphabet
Σ, we have 20 families of theories. As such, it is convenient to introduce a naming
convention for these (families of) theories.

If atoms of type A1 are allowed, we add either REG, VPL, or DCF to the name
of the theory-family depending on the class of languages permitted: REGLang,



VPLang, or DCFLang, respectively. If atoms of type A2 are allowed, we add
the abbreviation LEN, separated if necessary by a "+". Likewise, if atoms of
type A3 are allowed, we add the abbreviation WE. Finally, if atoms of type A3
are not allowed, but extended string terms are (so we have concatenation but not
equality between string terms), then we add the abbreviation CON. Note that
CON is superseded by WE due to reasons explained above. For example, the
most general theory which allows all three atom types (with deterministic context-
free languages for atoms of type A1) is denoted by WE + DCF + LEN. Similarly,
REG + LEN + CON describes the theory in which atoms of type A1 (where L is a
regular language and s is an extended string term) and A2 are allowed.

For theories allowing VPLang membership constraints (i.e. belonging to fam-
ilies of the form VPL + . . .), we assume a fixed partition of the alphabet Σ into
the call, return and internal alphabets Σc,Σr,Σi. We conclude this section with the
following remark.

Remark 1. Since REGLang (respectively, VPLang) is closed under union, inter-
section and complement, the set of languages expressible in REG (respectively,
VPL) is exactly REGLang (respectively, VPLang). However, the same is not true
for DCF and DCFLang, since that class is not closed, for instance, under inter-
section. For DCF the expressible languages are exactly the Boolean closure of
the deterministic context-free languages. Moreover, it can be inferred from well-
known results on word equations (see, e.g., [27, 33]) that the languages expressed
by WE are exactly those expressible by a single word equation in the sense of [27].

4 Separation and Grouping of Theories

We are interested primarily in whether we can decide properties of a language
expressed by a given formula and variable. Therefore, the first thing we consider
is the relative expressive power of the various theories defined in the previous
section. In particular, we want to understand how the classes of languages which
may be expressed by a formula/variable from a given theory relate to each other.
To make these comparisons formally, we define the following relation(s) on two
logical theories T1,T2 whose formulas contain string variables.

Definition 1. Let T1,T2 be theories whose formulas contain string-variables. We
say that T1 � T2 if, for every formula f ∈ T1 and every (string) variable x
occurring in f , there exists a formula f ′ ∈ T2 and variable x′ in f ′ such that the
languages expressed by x in f and x′ in f ′ are identical. Moreover, we say that
T1 ∼ T2 if both T1 � T2 and T2 � T1 hold. We write T1 ≺ T2 if T1 � T2 and
T1 / T2.
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Figure 2: Visual representations of all 20 families of string-based logical the-
ories considered. Theory-families are depicted in solid square boxes containing
their names (see Section 3). Dashed square-boxes around multiple theory-families
show equivalence with respect to the class of expressible languages (so equiva-
lence under ∼). The arrows between theory-families and their transitive closure
represent inclusion with respect to the class of expressible languages. Solid arrows
indicate that the inclusion is known to be strict, while dashed arrows indicate that
we do not know whether the inclusion is strict or not. The most expressive group
of theories (i.e. those equivalent to VPL + CON) are able to express RE. The up-
per figure indicates for which (families of) theories the emptiness and finiteness
problems are decidable or undecidable. The lower figure depictes (families) of
theories for which the universality (= Σ∗) and subset-universality (= S ∗) problems
are decidable/undecidable. Equivalence and inclusion (where the two languages
might come from different theories) are decidable if and only if both theories fall
into cases where universality (= Σ∗) decidable.



Hence, T1 � T2 if the class of languages expressible in T1 is a subset of the
class of languages expressible inT2, andT1 ∼ T2 if the two classes are equal. Note
that the relation ∼ is an equivalence relation that is a weaker notion of equivalence
than being isomorphic. That is, two theories need not be isomorphic to satisfy the
equivalence ∼.

We extend Definition 1 for the families of theories defined in Section 3 as fol-
lows. Recall that each family contains all the theories consisting of a particular
set of formulas, but whose underlying alphabet Σ may vary.

Definition 2. Let F1,F2 be families of theories as defined in Section 3. We say
that F1 � F2 if, for every theory T1 ∈ F1, there is a theory T2 ∈ F2 such that
T1 � T2. The relations ∼ and ≺ are then defined analogously,

Before moving on, let us make some remarks. It will often be the case that
there exist formulas such that the language expressed by a variable x occurring in
both formulas is the same, but the sets of satisfying assignments, when considered
as a whole, are not identical (see Remark 2 below). This has an important impli-
cation for what conclusions we can and cannot draw from a statement of the form,
e.g., T1 ∼ T2. For example, while we will later show that REG ∼ REG + LEN,
this does not imply that WE + REG + LEN ∼ WE + REG. Indeed we shall also
show explicitly that the latter does not hold.

Remark 2. Consider the LEN formula |x| = 2|y| where x, y are string variables.
Then the language expressed by x is the set of all even-length words over the un-
derlying alphabet Σ, and the language expressed by y is simply Σ∗. Both of these
languages are regular, and can be expressed in REG. However, if we were to
consider, for example, a WE + LEN formula x = yyy ∧ |x| = 2|y|, then we cannot
replace the condition |x| = 2|y| with constraints based on the aforementioned reg-
ular languages. The problem with doing so would be that it allows us to decouple
the sets of values for x and y satisfying the length constraint (so we get an x, y,
x′, y′ such that |x| = |y′| and |x′| = |y| and x = yyy holds, but where x′ might be
different from x and y′ might be different from y.

In [27] the authors consider expressibility of languages (and relations) by word
equations and show that a language is expressible by WE if and only if it is
expressible by a single word equation. The authors of [27] also show that, for
Σ ⊇ {a, b, c}, the regular language {a, b}∗ is not expressible by a single word equa-
tion, and thus not in WE. The same holds for the language {anbn | n ∈ N0}. Since
these languages are clearly expressible in WE + REG and WE + LEN respectively,
we may immediately conclude the following.

Theorem 1 ([27]). The following hold: WE ≺ WE + REG and WE ≺ WE + LEN.



On the one hand, all languages expressed in our theories are clearly recursively
enumerable. On the other hand, in our first main result, we show that, in fact, all
recursively enumerable languages can be expressed with only concatenation and
VPL-membership.

Theorem 2. The class of languages expressible in the familiy VPL + CON is ex-
actly RE.

Consequently, the class of languages expressible in each of VPL + CON + LEN,
WE + VPL, WE + VPL + LEN, DCF + CON, DCF + CON + LEN, WE + DCF, and
WE + DCF + LEN is the class of recursively enumerable languages RE. Thus, all
these theories are equivalent under ∼. Clearly, we immediately get that the satis-
fiability problem for all these theories is undecidable. In fact, by Rice’s Theorem,
any non-trivial property is undecidable for languages expressible in these theories.
As mentioned before, the case of WE + VPL is particularly interesting in the con-
text of string solving and word equations. Since visibly pushdown languages are
seemingly very close to regular languages, with many of the same positive closure
and algorithmic properties, it is perhaps surprising to see that while satisfiability
for WE + REG is decidable, satisfiability for WE + VPL is undecidable. More-
over, WE + VPL is a very natural extension of WE + LEN + REG. Since the satis-
fiability problem(s) for WE + LEN + REG and WE + LEN are both long standing
open problems of significant interest both to the word equations and string-solving
communities, the negative result for WE + VPL is both relevant and ominous.

In this context, it is now natural to ask whether we can separate the classes
of languages expressible by WE + LEN + REG and WE + VPL, respectively. The
existence of examples of recursively enumerable languages which are not express-
ible in the former is a necessary condition for having a decidable satisfiability
problem, and if we wish to settle this open problem we must also settle the exis-
tence of such examples.

The next result does exactly this. In [16] we have established, with some in-
volved argumentation, a sufficient criterion for languages to not be expressible in
WE + LEN + REG and have used it to identify a concrete example of such lan-
guage which is clearly recursively enumerable. To achieve this, we have first used
techniques from [27], which were developed to show that certain languages are in-
expressible by word equations only. We have first adapted these techniques in the
presence of length constraints (so, to obtain languages which are not expressible in
WE + LEN). With some care, we have also extended them for regular constraints
(so to obtain languages which are not expressible in WE + REG). However, such
techniques are altogether unsuitable for direct application in the presence of both
length and regular constraints (so for WE + LEN + REG) and a novel approach
was required. This new technique, as well as examples not expressible in the



aforementioned theories, are described in details in [16]. The result we obtain is
the following.

Theorem 3. There exist recursively enumerable languages which are not express-
ible in WE + LEN + REG and WE + LEN + REG ≺ WE + VPL. Moreover, we
have WE + LEN ≺ WE + REG + LEN and WE + REG ≺ WE + REG + LEN,
while the classes of languages expressible in WE + LEN and WE + REG are in-
comparable.

With this result, the relations between the classes of languages expressed by
the theories involving word equations is completely clarified; see the left side of
Figure 2. Next, we turn our attention to the remaining theories which do not ex-
tend the expressive power of word equations. Since we have already seen that con-
catenation together with visibly pushdown (or deterministic context-free) mem-
bership constraints is enough to model recursively enumerable languages, and
therefore word equations, the remaining theories consist of language membership
without concatenation (but possibly with length constraints) and all combinations
consisting of regular language membership constraints without word equations
(so including either concatenation, length constraints, both, or neither).

In the following lemma, we state another important result. For this, let C be
a class of formal languages which contains REGLang, is contained in CFLang,
and is effectively closed under intersection and complement. We assume that
the languages of C are specified by an accepting or generating mechanism which
allows the construction of a context-free grammar generating that language. Let
Ct be the theory defined as in Section 2 which allows only language membership
predicates (of type A1) for the class of languages C. Let Ct + LEN be the theory
which also allows length constraints. In this framework, the following holds (see
the proof in [15]).

Lemma 1. Ct + LEN ∼ Ct.

As VPLang is a class which fulfills the properties of the class C from the above
lemma, and is strictly included in RE, we immediately get the first claim of the
following theorem. The second claim can also be shown with some additional
effort (again, see [15]).

Theorem 4. (1) VPL ∼ VPL + LEN ≺ VPL + CON.
(2) REG ∼ REG + LEN ∼ REG + LEN + CON.

Recall that the languages expressible in REG (as well as the languages ex-
pressible in REG + LEN and REG + CON + LEN) and VPL (and VPL + LEN) are
exactly the classes REGLang and, respectively, VPLang, and for each formula
in one of these theories we can effectively construct a corresponding automaton
accepting the language expressed by a given variable. See Remark 3 below.



Remark 3. In fact, for a formula f in the theory VPL + LEN (which includes
the theories REG, REG + LEN + CON, and VPL) we can effectively construct a
formula g′ which is a disjunction of conjunctions gσ involving at most one mem-
bership predicate x ∈ Lx per variable, where each language Lx is in VPLang. We
can remove from g′ the conjunctions gσ which contain at least one membership
predicate x ∈ Lx with Lx = ∅. Now, it is easy to see that for the language expressed
by x is exactly the union of the languages Lx for all membership predicates x ∈ Lx

occurring in g′. Therefore, this language is in the class VPLang, and we can effec-
tively compute an automaton accepting it. Therefore, we can easily conclude that
for two given formulae f and φ from VPL + LEN and a variable x occurring in f
and a variable φ occurring in φ, we can decide whether the language expressed
by x is the same as (respectively, included in) the language expressed by y.

Let us now turn our attention to the theory DCF. The result of Lemma 1 does
not apply in this case, as the class of languages DCFLang is not closed under
intersection. In fact, for Lemma 1 to work, it would be enough to have that if L is
a finite intersection of languages from the class C then the set S = {|w| | w ∈ L}
is semi-linear. However, this still does not hold for DCFLang. See Example 1
below.

Example 1. Let U1 = {anb2n | n ≥ 1} and L1 = U+
1 . Let U2 = {bnan | n ≥ 1}

and L2 = aU+
2 b+. It is clear that L1 and L2 are in DCF. Let L = L1 ∩ L2. It

is not hard to observe that L = {ab2a2b4a4b8 · · · a2k
b2k+1

| k ≥ 1}. Further, let
S = {|w| | w ∈ L}. We have that S = {2k+2 + 2k+1 − 3 | k ≥ 1}. Clearly, S is not a
semi-linear set (and it is not a deterministic context-free language either).

In [15] we show an additional lemma.

Lemma 2. L = {wcw | w ∈ {a, b}∗} is expressible in WE + REG and not in DCF.

By Theorem 2 and the existence RE-languages which are not expressible in
DCF (see [45], as well as Lemma 2 or Example 1), we may infer the following
relations: DCF � DCF + LEN � DCF + CON and DCF ≺ DCF + CON.

This also shows that at least one of the relations DCF � DCF + LEN and
DCF + LEN � DCF + CON is strict. In fact, we can observe (see [15]) that the lan-
guage L = {wcw | w ∈ {a, b}∗}, which is expressible in DCF + CON and not DCF,
is not expressible by a restricted set of formulas in DCF + LEN. Accordingly, this
indicates that the separation might occur between DCF + LEN and DCF + CON.
We leave the following problem as open.

Open Problem 1. Investigate whether the relations DCF � DCF + LEN and
DCF + LEN � DCF + CON are strict or not (and note that DCF ≺ DCF + CON).



As said before, REG + LEN + CON and VPL + LEN express exactly the classes
of regular languages and VPL languages, respectively. Since the regular languages
are a strict subset of the VPL languages, which in turn are a strict subset of the
deterministic context-free languages, we may conclude the following strict inclu-
sions in terms of expressibility: REG + LEN + CON ≺ VPL + LEN ≺ DCF.

Finally, note that there are languages expressible in WE (such as {xx | x ∈ Σ∗})
which are not regular nor visibly pushdown, and thus not expressible in REG or
VPL or theories with equivalent expressibility. So, REG ≺ WE + REG holds.
Moreover, we have already seen examples of regular languages which are not
expressible in WE or WE + LEN.

Based on the previous results, we can now also discuss the emptiness problem,
and the closely related finiteness problem. This is particularly interesting since
emptiness for a language expressed by a formula f and variable x corresponds
exactly to the satisfiability problem for f . Based on existing literature [3, 24, 41,
33], it is not hard to show that emptiness and finiteness are decidable for VPL and
WE + REG but undecidable for DCF.

On the other hand, two cases where it seems particularly difficult to settle
the decidability status of the satisfiability and, therefore, emptiness problems are
WE + LEN and WE + REG + LEN. Emptiness for the former in particular is
equivalent to the satisfiability problem for word equations with length constraints
which is a long-standing and important open problem in the field. Similarly,
the latter is prominent in the context of string-solving and as such satisfiabil-
ity/emptiness also presents an important open problem which is likely to be closely
related to that of WE + LEN. Consequently, WE + VPL presents a particularly in-
teresting case as a “reasonable” generalisation of WE + REG + LEN and, in the
absence of answers regarding this theory, it makes sense to consider the same
problems for theories with slightly more or slightly less expressive power. If
we extend the expressive power as far as WE + DCF, then undecidability is in-
herited directly from DCF. However, satisfiability and emptiness remain decid-
able for VPL. Moreover, visibly pushdown languages share many of the desir-
able computational properties of regular languages, and, as discussed, we can
view WE + VPL as a slighter generalisation of WE + REG + LEN. Neverthe-
less, due to our result from Theorem 2 of the previous section, we know that
VPL + CON expresses already RE, so emptiness and finiteness are undecidable
for VPL + CON, and consequently for WE + VPL and other families F of theories
satisfying VPL + CON � F. The left part of Figure 2 summarizes the understand-
ing of the emptiness and finiteness problems, as resulting from our results.



5 Universality, Greibach’s Theorem, and Express-
ibility Problems

Universality is an important problem for a number of reasons. Firstly, undecidabil-
ity of universality implies undecidability of equivalence and inclusion for any the-
ory in which the universal language Σ∗ is expressible (which is true in any string-
based theory containing at least one tautology). Secondly, an undecidable univer-
sality problem is the foundation for Greibach’s theorem, which is helpful for prov-
ing that many other problems are undecidable. For instance, we shall make use
of Greibach’s theorem to show several problems concerning expressibility of lan-
guages in different theories are undecidable. We recall Greibach’s theorem below.

Theorem 5 ([24]). Let C be a class of formal languages over an alphabet Σ ∪ {#}
such that each language in C has some associated finite description. Suppose
P ( C with P , ∅ and suppose that all the following hold:

1. C and P both contain all regular languages over Σ ∪ {#},

2. P is closed under quotient by a single letter,

3. Given (descriptions of) L1, L2 ∈ C descriptions of L1 ∪ L2, L1R and RL1 can
be computed for any regular language R ∈ C,

4. It is undecidable whether, given L ∈ C, L = Σ∗.

Then the problem of determining, for a language L ∈ C, whether L ∈ P is unde-
cidable.

Note that in order to apply Greibach’s theorem, we need a variant of the uni-
versality problem to be undecidable which refers to a sub-alphabet, rather than the
whole alphabet.

Definition 3. Let T be a theory defined in Section 3 with underlying alphabet Σ

and such that |Σ| ≥ 3. The subset-universality problem is: given a formula f ∈ T ,
variable x occurring in f and S ⊂ Σ with |S | > 1, is the language expressed by x
in f equal to S ∗?

We recall the following results:

Theorem 6 ([21, 17, 3, 24]). Universality is undecidable for WE and DCF, and
decidable for VPL. Subset-universality is decidable for VPL but not DCF.



To discuss the equivalence and inclusion problems, it makes sense to consider
them in a general setting where the two languages may be taken from different
theories. We therefore consider equivalence and inclusion problems for pairs of
theories (T1,T2). Combining the known results above with the constructive equiv-
alences pointed out in Remark 3, we easily get that equivalence and inclusion for
(T1,T2) are undecidable whenever at least one of T1,T2 contains WE or DCF, but
they are decidable for all other pairs of theories. In a similar way, one can show
that cofiniteness is undecidable for WE.

We may, clearly, propagate undecidability of universality and related problems
upwards through families of theories containing WE (or DCF) as a syntactic sub-
set, or apply Rice’s theorem to get such results for all theories expressing RE. In
[15], we also show the following.

Theorem 7. Subset-universality is decidable for WE + LEN and undecidable for
WE + REG. In particular, for S large enough, for any theory T from WE + REG
with underlying alphabet Σ ⊃ S , the problem of whether a language expressed in
T is exactly S ∗ is undecidable.

Theorem 7 allows us to apply Greibach’s Theorem to many theories defined
in Section 3.

Theorem 8. Let F be a family of theories defined in Section 3 which contains
WE + REG. For large enough alphabets Σ, if C is the class of languages ex-
pressible by the theory T ∈ F with underlying alphabet Σ, then the conditions of
Greibach’s theorem are satisfied by C.

In the following, we give an example application of Theorem 8 with respect
to the pumping lemma for regular languages (see, e.g., [24]). Aside from defin-
ing an interesting superclass of the regular languages itself, there are many rea-
sons to be interested in notions of pumping. For example, when considering
(in)expressibility questions (even beyond the regular languages), as well as part
of a strategy for producing satisfiability results in the context of length constraints
or other restrictions. We use the pumping lemma for regular languages because it
is well-known, but the ideas are easily adapted to other useful notions of pumping
and closure properties more generally. We recall first this lemma.

Lemma 3 ([24]). Let L be a regular language. Then there exists a constant c such
that for every w ∈ L with |w| > c, there exist x, y, z such that (i) |xy| < c, and (ii)
w = xyz, and (iii) xynz ∈ L for all n ∈ N0.

Now, Theorem 8 can be applied in this context (see [15]).

Theorem 9. It is undecidable whether a language expressed by a formula in a
theory from WE + REG satisfies the pumping lemma for regular languages.



Theorem 7 also tells us that we cannot use Greibach’s theorem as stated to
show that properties of languages expressible in WE + LEN are undecidable. We
leave as an open problem whether an equivalent of Greibach’s theorem can be
adapted to this context:

Open Problem 2. Is there an equivalent of Theorem 5 for the classes of languages
expressible in WE + LEN or WE?

6 Expressivity Problems
Further, we consider decision problems related to expressivity. These problems
have the general form: given a language L expressed by a formula in a theory T1

and given a second theory T2, can we decide whether or not L can be expressed
by a formula in T2?

We begin by noting that since it is decidable whether or not a deterministic
context-free language is regular (see [42, 44]), the same holds true for visibly
pushdown languages, and hence whether a language expressed in VPL can be ex-
pressed in REG. Therefore, it is clearly decidable whether a language expressed in
VPL is expressible in REG. The same holds for theories from families equivalent
to VPL and REG under the relation ∼.

Naturally, since we have already seen that VPL + CON is capable of express-
ing all RE-languages, it is undecidable whether a language expressed in a theory
from VPL + CON is expressible in a theory from any of the families which have
strictly less expressive power.

The separation results from Section 4 and Theorem 8 together mean we can
get the following negative results as a consequence of Greibach’s theorem. They
have a particularly relevant interpretation in the context of string solving in prac-
tice. Specifically, it is often the case that string-solvers will perform some pre-
processing of string constraints in order to put them in some sort of normal form
which will make them easier to solve. One natural thing to want to do in this pro-
cess is to reduce the number of combinations of sub-constraints of differing types
by converting constraints of one type to another. This is useful particularly in cases
where the combinations are difficult to deal with together in general. Word equa-
tions, regular constraints and length constraints are one such combination (recall
from Section 4 that satisfiability for the corresponding theory including all three
types of constraint is an open problem, but if length constraints are removed then
satisfiability becomes decidable). Unfortunately, the following theorem reveals
that we cannot, in general, decide whether length constraints can be eliminated by
rewriting them using only regular membership constraints and word equations.



Theorem 10. It is undecidable whether a language expressed in WE + REG + LEN
can be expressed in WE + REG.

The same undecidability result holds if, instead of removing length constraints
by rewriting them as regular membership constraints and word equations, we want
to remove word equations constraints by rewriting them as regular language mem-
bership constraints (possibly also with length constraints which, in the absence of
word equations, do not increase the expressive power due to Theorem 4). While
this result can also be obtained via Greibach’s theorem, we can, in fact, state a
stronger version for which we need a novel approach, detailed in [15]. In particu-
lar, we can show that it is already undecidable whether a language expressible by
word equations (without additional constraints) is a regular language (i.e., can be
expressed in REG).

Theorem 11. It is undecidable whether a language expressed in WE is regular.
In other words, it is undecidable whether a language expressed by a formula from
WE is regular.

Just as interesting as the result reported in Theorem 11 is the converse prob-
lem, which remains open.

Open Problem 3. Is it decidable whether a regular language is expressible by
word equations?

Although a trivial consequence of Theorem 11, it is somehow surprising that
it remains undecidable if a word equation combined with regular constraints ex-
presses a regular language. Clearly, every regular language is trivially expressible
in WE + REG.

Finally, we note the remaining cases which correspond to removing regular
language membership constraints in the presence of word equations, and remov-
ing length constraints in the presence of word equations but without regular con-
straints. Thus, we leave the following questions open:

Open Problem 4. Is it decidable whether a language expressed in WE + REG
(respectively, in WE + REG + LEN) can be expressed in WE (respectively, in
WE + LEN)? Is it decidable whether a language expressed in WE + LEN can
be expressed in WE?

7 Conclusions
Logics based on strings or words are an important topic in fields such as combi-
natorics on words and formal methods. Motivated primarily by tasks arising in



the automated analysis of software, string-solving, a collection of infinite-domain
constraint satisfaction problems whose primary underlying objects are strings, is
an area of increasing importance. However, despite considerable improvement
in our understanding of this topic, there remains a wealth of open problems and
many theoretical topics, particularly involving word equations, are still wide open
for new developments.

In [16, 15], which are overviewed in this note, we have studied a variety of
string-based logics inspired by typical types of constraints occurring in string-
solving applications, such as word equations, length equality constraints and lan-
guage membership constraints. By considering the formal languages obtained by
looking at the set of values a single variable in these logics might take as part of
a satisfying assignment for a given formula, we were able to obtain several novel
results regarding the relative expressive power of these theories resulting in the
hierarchy depicted in Figure 2. Within this broader picture, we have been able to
also add new results regarding the computability of canonical decision problems
for formal languages such as emptiness, finiteness, universality, equivalence and
inclusion (see also Figure 2). Together with existing results, this has allowed us
to portray a relatively complete picture of when these problems are and are not
decidable within our framework.

Our results on decision problems - in particular (a variant of) the universality
problem - created also a framework allogin us to apply Greibach’s theorem to
obtain further undecidability results. We made use of this tool alongside results
overviewed in Section 4 to prove that in various cases, it is undecidable whether
or not a language expressed by one theory can also be expressed in another.

On the other hand, we have also highlighted several interesting new open prob-
lems in the cases where we are not able to settle the decidability status of certain
problems. We expect that studying these problems will lead to valuable new in-
sights and techniques for the theory of word equations, as well as in the theory of
formal languages and string-solving, more generally.
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