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This month, in the Distributed Computing Column, Michel Raynal revisits
two classical problems: mutual exclusion and consensus. Both of these problems
are central to distributed computing. Many date the birth of distributed comput-
ing, as a field, to Dijkstra’s first paper on mutual exclusion in 1965, and it remains
an area of active research today (see, e.g., new breakthroughs on recoverable mu-
tual exclusion this year). Similarly, ever since the consensus problem was first
formally defined in a 1980 paper by Pease, Shostak, and Lamport, it has been
recognized as lying at the heart of distributed computing. Recent innovation in
blockchains (which rely on consensus to order blocks) only reinforces the con-
tinued relevance of consenus today. Yet research on these two central problems
has followed somewhat different paths, focusing on different models and different
aspects of concurrency and fault-tolerance. In this short note, Michel Raynal pro-
vides a historical overview of their development, and argues that they are really
“two sides of the same coin.”

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.
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Abstract

This short note shows that consensus is to logical objects what mutual
exclusion (mutex) is to physical objects. Namely, both allow processes to
cooperate in a consistent way through objects operations of which must be
executed sequentially (i.e., objects defined by a sequential specification).
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1 Concurrent Computing
While a sequential process describes the behavior of a given state machine [42],
concurrent computing is about the study of asynchronous sequential processes that
execute concurrently (i.e., possibly at the same time) but not independently from
each other1. Asynchronous means that each process proceeds to its own speed,
which can vary with time and remains always unknown to the other processes.
The code executed by the processes can be specific or not to each process.

Considering a set of sequential processes, the concept of concurrent processes
(multi-process program) captures the fact that the individual behavior of each se-
quential process must be controlled so that the global behavior of the set of pro-
cesses remains consistent (which can be captured by predicates and invariants,
e.g., [21, 22, 30, 31]). These fundamental notions have been introduced by E.W.
Dijkstra in the early sixties [17, 18, 19, 20]. (The interested reader will find more
historical and scientific developments in [2, 6, 32, 36, 39, 45, 53, 55, 57, 58].)

1At the very beginning, the corresponding underlying multiprocessor machine was simulated
on a single mono-processor enriched with peripheral devices. Then it was a real physical mul-
tiprocessor. Today it is provided by what is sometimes called an Internet machine covering the
world.



2 Parallel Computing vs Distributed Computing

Parallel computing Parallel computing is a natural extension of sequential com-
puting in the sense that the aim of parallel computing is to detect and exploit data
independence to obtain efficient programs: once identified, independent sets of
data can be processed independently from each other on a multiprocessor. It is
nevertheless important to notice that, while independent data can be processed in
parallel, any parallel program could be executed on a single processor with an
appropriate scheduler (the corresponding sequential execution could be of course
highly inefficient!).

Distributed computing The nature of distributed computing is totally different.
Namely, distributed computing is characterized by the fact that there is a set of
predefined (and physically distributed) computing entities (processes) that are im-
posed to the programmers and these entities need to cooperate to a common goal.
Moreover the behavior of the underlying infrastructure (also called environment)
on which the distributed application is executed is not under the control of the pro-
grammers who have to consider it as an hidden input. Asynchrony and failures are
the most frequent phenomenons produced by the environment that create a “con-
text uncertainty” distributed computing has to cope with. In short, distributed
computing is characterized by the fact that, in any distributed run, the run itself is
one of its entries [54].

A duality To summarize, parallel computing is the exploitation of the indepen-
dence of input data to obtain efficient algorithms (programs), while the aim of
distributed computing is to allow predefined computing entities to cooperate to a
common goal in a consistent way.

3 Mutex vs Consensus: Preliminary Remark

Both problems were originally addressed in different system models, namely
asynchronous systems with no failures for mutex [18] (the only “adversary” was
asynchrony), and synchronous systems with Byzantine failures for consensus [48]
(the only “adversary” was Byzantine failures).

They were then extended to more general system models including both asyn-
chrony and process failures, namely asynchronous systems with process crashes
failures for mutex and asynchronous systems with process crashes/Byzantine fail-
ures for consensus. As we will see, this required to add computability power to
the underlying system model for these problems can be solved.



4 1965: Mutual Exclusion

The very first objects that were shared by concurrent processes were physical
objects (resources) such as discs, tapes, and shared memory. Mutual exclusion
was then introduced to make their accesses by the processes consistent (what does
happen if several processes simultaneously access such a physical object?). The
problem and its answer were introduced by E.W. Dijkstra who proposed the notion
of a critical section, namely a part of code that can be accessed by a single process
at a time [18].

The mutex object To ensure this property, E.W. Dijkstra introduced a new
concurrency-related object that we call here mutex (shortcut for mutual exclu-
sion). This synchronization object provides processes with two operations de-
noted acquire() and release() that allow to bracket the critical section code as
described by the following pattern:

acquire(); critical section; release().
As any computing object, the mutex object is specified with a set of properties
that describe all its correct behaviors, namely:

• Mutual exclusion (safety). At most one process at a time executes the criti-
cal section.

• Starvation freedom (liveness). Any invocation of acquire() terminates (and
consequently the invoking process eventually enters the critical section)2.
(Let us observe that fact that any invocation of acquire() must terminate
implies that any invocation of release() must also terminate.)

Encapsulation and sequential execution The two operations acquire() and
release() are not visible at the application level. At this level a process invokes
higher level operations, e.g., op() such that

operation op() is acquire(); critical section; release() end operation.

In some cases the object protected by a mutex object, say mtr, provides pro-
cesses with several operations. This is for example the case of two resources R1
and R2 that, due to energy consumption, cannot be used at the very same time. In
this case we have a single mutex object and two operations
operation opR1() is mtr.acquire(); access R1; mtr.release() end operation,

2When he introduced mutual exclusion, Dijkstra considered a weaker liveness property, named
deadlock-freedom: If one or several processes invoke acquire(), at least one of them will enter the
critical section.



and
operation opR2() is mtr.acquire(); access R2; mtr.release() end operation.

This approach has also naturally been used for data objects (for example a
stack where opR1 is push() and opR2 is pop()).

It is easy to see that mutual exclusion allows processes to execute sequentially
(we also say linearize [29]) predefined parts of code concerning their cooperation.
So, mutual exclusion allows the processes to build a total order on the execution
of the critical section codes protected by the same mutex object. From a historical
point of view, mutex can be considered as the first distributed computing problem:
it allows a predefined set of processes to cooperate to a common goal, namely
preserve the consistency of an object in the presence of concurrency. A rigorous
exposition of the mutex theory is presented in [38].

Instantiating a mutex algorithm Let us consider a n-process system. While
it is possible to design mutex algorithms tailored for ad’hoc values of n (for ex-
ample there are mutex algorithms specifically designed for two processes only),
e.g. [50], and consequently such algorithms do not work for more than two pro-
cesses. Nearly all mutex algorithms are designed to work for any value of n ≥ 2,
i.e., n is a parameter that can differ in each instance of the algorithm.3.

On the fault-tolerance side A process crashes when it unexpectedly and defini-
tively halts. Usual algorithms that solve mutex allow a process to crash when it
is not executing acquire(), release() or the code in the critical section. Unfortu-
nately mutual exclusion cannot solved if a process may crash at any time. This is
due to the fact that if a process crashes while executing acquire(), release() or the
code in the critical section, due to asynchrony, no other process can be informed
of its crash. To solve this issue, the system must be enriched with additional com-
putational power.

An approach consists in providing processes with information on failures.
This is the failure detector approach introduced in [11]. The integer n being the
number of processes, let us consider a model that allows up to t processes to crash.
When considering systems where processes communicate through read/write reg-
isters, the weakest failure detector (denoted QP for Quasi-Perfect) that allows
mutex to be solved has been introduced in [16]. Weakest means that no failure
detector that provides processes with less information on failures than QP allows
mutex to be solved in read/write systems. Assuming t < n/2 (i.e. the system

3As we will see in Section 7, due to computability issues, the situation is different for consensus
where a consensus algorithm for n processes does not work for (n + x) processes for x ≥ 1. This is
related to the additional computability power needed to solve consensus in crash-prone systems.



is partition-free), the weakest failure detector (denoted T ) that allows mutual ex-
clusion to solved in synchronous message-passing systems has been introduced
in [15].

These two failure detectors have close but different definitions. Both are
weaker that the perfect failure P and stronger than the eventually perfect fail-
ure detector ^P defined in [11]. Moreover, both are stronger than the weakest
failure detector (eventual leader denoted Ω) that allows consensus to be solved in
read/write systems when t < n [43] and in message-passing when t < n/2 [10].

Transactional memory The concept of transactional memory was proposed
by M. Herlihy and J. Moss in 1993 [28], and later refined by N. Shavit and D.
Touitou[56]. The idea is to provide the designers of multiprocess programs with
a language construct (namely, the notion of an atomic operation called a transac-
tion) that discharges them from the management of synchronization issues. More
precisely, a programmer has to concentrate her efforts only on defining which
parts of processes have to be executed atomically and not on the way atomicity
(mutual exclusion) is realized, this last issue being automatically handled by the
underlying system.

5 A Trivial Observation:
Physical Objects vs Logical Objects

A physical object is an object that cannot be replicated by software (e.g., a printer),
while a logical (or immaterial) object is an object the value of which can by repli-
cated by software (data). Said differently, at the basic level the value of a logical
object is a structured set of bits while a physical object is a hardware device.

6 1971, 1977: Once Upon a Time:
the Readers/Writers Problem

A file is a logical object that provides processes with two operations: read_file()
that allows a process to read the file and write_file() that allows a process to
modify its content.

The Readers/Writers Problem It was observed by P. Courtois, F. Heymans,
and D. Parnas [14] (1971) that mutual exclusion is stronger than necessary to
provide the synchronization needed to correctly implement the write_file() and
read_file() operations, namely, only each execution of write_file() must be



executed in mutual exclusion with any other operation execution (read_file()
or write_file()), while the executions read_file() needs to be executed in
mutual exclusion only with respect to write_file() (and not among themselves).
As far as we know, this was the first (implicit) distinction between physical and
logical objects.

The wait-freedom approach This approach was later generalized by L. Lam-
port to allow concurrent readings while writing [34] (1977), which showed that
(as a file is a logical object) the readers/writer problem does not need mutual
exclusion to be solved (see also [51]). This approach culminated in the notion
of wait-free computing introduced by M. Herlihy [26]. Wait-free means that the
progress of a process cannot be prevented by the behavior of the other processes
(arbitrary unknown speed or crash failures).

From safe read/write bits to atomic read/write registers In a very interesting
way, it has been shown by L. Lamport that, while the atomicity of basic read/write
registers are sufficient to solve mutex, they are not necessary to solve it. More
precisely, mutual exclusion can be solved on top of single-writer multi-reader safe
registers (see [33, 37]). A safe register is a register that can be written by a single
process and read by any number of processes. A write defines the new value of
the register. A read whose execution is not concurrent with a write returns the
last value written in the register. A read concurrent with a write returns any value
that the register can contain (so it can return a value that has never been written
in the register!). In a non-trivial way, multi-writer multi-reader atomic registers
can be built on top of single-writer single-reader safe bits (despite asynchrony and
process failures. A survey of such constructions is presented in Section V of [53].

7 1980: The Advent of Consensus:
On Fault-Tolerant Distributed Computing

Definition The consensus problem was introduced by S. Pease, R. Shostak and
L. Lamport in [41, 48] in the context of synchronous distributed systems prone
to Byzantine process failures (arbitrary misbehavior of a process). This problem
is at the core of distributed computing agreement problems. We consider here
asynchronous read/write or message-passing systems prone to crash failures. Let
a process be correct in a run if it does not crash during that run. In such a context
a consensus object is defined by a single operation denoted propose() that takes a
value as input parameter and returns a value. When a process invokes propose(v)



and obtains the value v′ we say that it proposes v and decides v′. Consensus is
defined by the following properties.

• Validity (safety). If a process decides v then a process proposed v.

• Agreement(safety). No two processes decide different values.

• Termination (liveness). If a process invokes propose() and does crashes, it
decides.

Impossibility Unfortunately consensus is impossible to solve in the presence
of asynchrony and even a single process crash, be the communication system
message-passing [24] or read/write registers [44]. This means that the system has
to be enriched with additional computability power to make consensus solvable.
Several enrichments are possible.

• Enrich the system with synchrony assumptions (e.g. [23]).

• Enrich the system with scheduling assumptions (e.g. [5]).

• Enrich the system with randomization (e.g. [4, 46]).

• Restrict the set of input vectors that can be proposed (e.g. [47]). (An input
vector has one entry per process containing the value it proposes. Of course
a process knows only the value of its entry).

• Enrich the system with information on failures (failure detector approach [10,
11]).

• Enrich the system with asynchronous rounds such that, for each round r and
each process p, the model provides the set of processes that p hears of at
round r. The features of a specific system is then captured as a whole, just
by a predicate over the collection of heard-of sets [12].

Consensus number of an object Let us consider an asynchronous crash prone
system in which the processes communicate by reading and writing atomic reg-
isters (RW type). As just noticed, the previous impossibility results states that
consensus cannot be solved in such a system. So, a fundamental question is:
which additional computability power (defined not in terms of system behaviors
but in terms additional object types) needs to be added to the system model so
that the consensus can be solved. To this end, M. Herlihy introduced the notion of
consensus number [26].



The consensus number of an object type T , denoted CN(T ), is the greatest
number of processes for which consensus can be solved from any number of
atomic read/write registers and any number of objects of type T . If there is no
such greatest number, the consensus number of T is +∞.

Let RW_TS be the type of RW registers accessed with Test&Set() operation,
and RW_CS be the type of RW registers accessed with Compare&Swap() oper-
ation4. It has been shown in [26] that CN(RW_TS)= 2 and CN(RW_CS)= +∞.
More generally, [26] introduces an infinite hierarchy of objects, that cover all pos-
sible consensus numbers. The interested reader can look at [49] where is defined
the notion of k-sliding window RW register. This object family spans the whole
consensus hierarchy: the consensus number of the k-sliding window RW register
is exactly k.

8 Consensus:
a Simple Way to Agree on a Total Order

Ordering object operations Let us consider an object defined by a sequential
specification, e.g., a stack with its two operations push() and pop(). To cope with
asynchrony and failures, the stack (which is a logical object, i.e. a structured set
of bits) is replicated on each process. So the main issue consists in ensuring that
the push() and pop() operations issued by the processes are applied in the same
order to all the local copies of the stack. A simple way to attain this goal consists
for each process in:

1. announcing the operation it wants to execute,

2. regularly defines a sequence on the operations it sees as announced and not
yet executed,

3. and proposes this sequence as input to a consensus instance.

Combined with a sequence of consensus instances (in which all processes agree a
priori), this allows all the local copies of the stack to progress the same way [10,
26].

Hence, as it allows to build a total order on operations, consensus lies at the
core of fault-tolerant implementations for the objects defined by a sequential spec-
ification. (For objects not defined by a sequential specification, i.e. concurrent
objects, the reader can consult [7, 8, 52].)

4Roughly speaking both operations return the current value of the register and write a new
value in it. The difference lies in the fact that Test&Set() is an unconditional write of a predefined
value, while Compare&Swap() is a conditional write of a value.



Consensus vs mutex: illustration Let us consider money transfer as an object
providing its users (a user is a process associated with one and only one money
account) with two operations transfer() that allows a process to transfer money
from its account to another account, and balance() that allows a user to read an
account. Let us observe that an account is a logical object.

It has recently been shown that money transfer among a set of processes, each
having its own account, does not need consensus [3, 13, 25] 5. It is an announce-
ment/broadcast problem that must satisfy some causality requirements.

When several persons share the same account, the associated process consists
of several threads, one per person co-owner of the account. The invocations of the
operations transfer() issued by the threads that are co-owners of the same account
must then be ordered in order to prevent double-spending from the corresponding
account. This could be realized with mutex (enriched with an appropriate failure
detector or random numbers if the system is crash-prone).

But, as an account is a logical object this ordering can be realized (despite
process failures and asynchrony) with the help of consensus. It follows that if each
account can be accessed by at most k threads, an object the consensus number of
which is k is sufficient to realize money transfer (this was first noticed in [25]).

9 Both Sides of the Same Coin

When considering objects the consistency of which is defined by a sequential
specification (i.e, objects whose operations must appear as being executed sequen-
tially), it follows from the previous simple observations that, while both mutex and
consensus can be used to build a total order, mutex is for physical objects (which
by nature cannot be replicated), and consensus is for logical objects (structured
sets of bits which can be replicated)6. In this sense, mutex and consensus are the
two sides of the same coin. The content of this note is summarized in Table 1.

The “Underlying coordination” column refers to the type of synchronization
needed to implement mutex or consensus, namely, mutex ensures that the con-
cerned object can be physically accessed by at most one process at a time, while
consensus does not prevent several processes from invoking and simultaneously
executing object operations (after these operations have been totally ordered by
a consensus instance). The column “Helping needed” refers to the fact the al-

5It is pleasant to observe that the heavy Blockchain machinery was introduced to built a total
order on the cryptocurrency operations issued by users, and this is not needed! For the inter-
ested reader, [13, 25] consider money transfer as an object defined by a sequential specification,
while [3] considers money transfer as an object defined by a concurrent specification.

6Of course, in some specific contexts, it can be interesting to use mutex for logical objects, but
this is another issue not addressed in this note.



Nature of Possible Total order Underlying Helping Weakest
the object replication obtained from Coordination needed FD
Physical No Mutex strong Yes QP, T
Logical Yes Consensus weak Yes Ω

Table 1: Total order: mutex vs consensus

gorithms implementing mutex or consensus need specific helping mechanisms to
ensure the liveness of the operations on the object that is built [1, 9, 26, 54]7. The
last column “Weakest FD” concerns the weakest failure detectors that allows mu-
tex or consensus to be solved. As already indicated, for read/write systems it is the
failure detector QP for mutex [16] and Ω for consensus [43], while, for message-
passing systems such that t < n/2, it is the failure detector T for mutex [15] and
the eventual leader failure detector Ω for consensus [10]. It is worth noticing that
the weakest information on failures that allows mutex to be solved includes a per-
petual property [15, 16], while that the weakest information on failures needed to
solve consensus needs to satisfy an eventual property only [10]. This is strongly
related to the underlying nature of the object (physical vs logical).

Let us again insist on the fact that, in a crash-prone system where the pro-
cesses communicate through read/write atomic registers (resp. message-passing
when assuming t < n/2), the weakest failure detectors QP (resp. T ) that allows
mutex to be solved is stronger than the weakest failure detector Ω that allows
consensus to be solved. As previously noticed, this is due to the fact that the
implementation of mutex requires a stronger underlying synchronization than the
one needed to implement consensus. More precisely, this is the main difference
between mutex and consensus, because of their very definitions mutex does not
allow concurrency at the implementation level, whereas consensus does.

Last but not least, let us notice that a recent paper by L. Lamport [40] describes
a deconstruction of his famous Bakery mutex algorithm [33] from which is built a
distributed state machine as defined in [35] (i.e., any object defined by a sequential
specification). This can be seen as an answer to the question posed in the title of
this note.

7As far liveness properties are concerned, wait-freedom [26] and non-blocking [29] for consen-
sus correspond to starvation-freedom and deadlock-freedom for mutex. Differently obstruction-
freedom [27] for consensus has no corresponding liveness property that could be associated with
mutex (this is due to the fact that mutex implicitly considers the object to with it is applied as a
“physical” object.
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