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This month, the Distributed Computing Column is featuring Dean Leitersdorf,
winner of the 2023 Principles of Distributed Computing Doctoral Dissertation
Award. His work on sparse matrix multiplication has led to several breakthroughs
that improve significantly on the state of the art. These new approaches have led
to faster algorithms for a variety of related problems, including constant-round
algorithms for computing graph spanners, approximate all-pairs-shortest-paths,
and the girth of a graph (up to an additive 1) in the congested clique model.

Recent progress in distributed matrix multiplication has been fast, and real-
world applications of matrix multiplication have only been increasing in impor-
tance. In this column, Dean Leitersdorf gives an overview of the state of the art
for distributed matrix multiplication, and its connection to all-pairs shortest paths
in the congested clique model. He provides both a summary of his new sparity-
aware approach, along with a discussion of open questions and possible future
directions. Overall, then, this column provides a succinct overview of a rapidly
moving area of distributed algorithms!

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.



The Relationship between APSP andMatrix
Multiplication in Congested Clique

Dean Leitersdorf

Introduction
The field of distributed computing has recently explored the fundamental bidirectional rela-
tionship between matrix multiplication and the all-pairs-shortest-path (APSP) problem in the
distributed Congested Clique model. Matrix multiplication is the foundation for a wide vari-
ety of problems in the exact sciences, with significant algorithmic research effort having been
invested in finding the smallest ω such that sequential matrix multiplication [12, 20, 33, 34]
can be computed in O(nω) time (where ω < 2.37286 is the best currently-known result [4]).
Similarly, graph theory has been the bedrock of computer science research for much of the
past century, with the fundamental problem of distance computation having wide implications.
While it is well known that the all-pairs-shortest-path (APSP) variant of distance computation
can be related to matrix exponentiation through the min-plus semiring, a recent line of works
in distributed computing has explored the implication of this connection on approximation al-
gorithms that utilize only o(poly(n)) Congested Clique rounds.

In this text, we analyze this line of works and discuss the future research directions of the
field. The current state-of-the-art results exploit exact Congested Clique matrix multiplication
to perform exact APSP in O(n1/3) rounds, and O(1)-approximate APSP in O(log log n) rounds
or O(poly log n)-approximate APSP in O(1) rounds. It is of significant interest whether it is
possible to perform O(1)-approximate APSP in O(1) rounds as this would imply a drastic re-
duction in time complexity between exact APSP in O(poly(n)) rounds and approximate APSP
(with a constant approximation factor) in constant rounds. In the rest of this text we highlight
the results of this research direction and speculate with regards to future results.

Preliminaries
We begin by presenting the Congested Clique model, proceed to defining matrix multiplication
(MM) and the all-pairs-shortest-path (APSP) problem in this setting, and conclude the prelim-
inaries by showing some basic relationships between MM and APSP in Congested Clique.

In CONGEST [32], computational nodes and communication links between them are repre-
sented by a graph, G. Every node can perform unlimited computation, is initially only aware of
its incident edges, and can communicate in synchronous rounds with its neighbors by sending
each a O(log n)-bit message per round. Typically, algorithms solve problems over G (e.g. dis-
tance computations), where the main complexity measure is the number of rounds an algorithm
takes. The Congested Clique model [28] is similar to CONGEST, but separates the input from
the communication topology: the input is a graph G, but the communication topology allows
all nodes to communicate directly with one another.



Definition 1 (MM in Congested Clique). Let S , T be two n by n matrices such that, for all i,
node i holds the ith rows of S and T . Computing the product P = S · T in Congested Clique is
achieved when, for all i, node i knows row i of P.

Definition 2 (APSP in Congested Clique). Let G be an input graph. Computing the APSP
over G is achieved when for for every nodes u, v, node u knows the distance from u to v in G.

Brief Overview
Many recent Congested Clique papers study distance problems [7,10,18,21,24,29,31]. Specif-
ically, [10, 21] exploit a well-known connection between distances and matrix multiplication –
the nth power of the adjacency matrix A of a graph, taken over the min-plus (or tropical) semir-
ing, corresponds to shortest-path distances. Hence, iteratively squaring a matrix log n times
gives the best known algorithms for APSP in Congested Clique, including (1) an Õ(n1/3) round
algorithm for exact APSP in weighted directed graphs [10], (2) O(n0.158) round algorithms for
exact APSP in unweighted undirected graphs and (1 + o(1))-approximate APSP in weighted
directed graphs [10], and (3) an O(n0.2096) round algorithm for exact APSP in directed graphs
with constant weights [21].

Faster approximations for larger constants are obtained by computing a k-spanner (sparse
subgraph approximating distances by a factor of k), and having all nodes learn the spanner.
Using the results of [31], this gives a (2k − 1)-approximation for APSP in Õ(n1/k) rounds,
which is polynomial for any constant k. This raises the following fundamental question.

Question 1. Are there constant-factor APSP approximations in sub-polynomial time?

For SSSP, this is indeed possible [7,23], with a gradient-descent-based algorithm obtaining
a (1 + ε)-approximation in O(ε−3polylog n) rounds (even in BCC) [7].

In [27], we develop a line of sparsity aware matrix multiplication algorithms. The com-
plexities of our algorithms do not depend on the sparsity structures of the matrices, rather, only
on the total number of non-zero elements. We then apply our sparse matrix multiplication al-
gorithms to efficiently implement basic primitives for distance computations. For instance, we
compute for every node the distances to the O(n2/3) nodes closest to it in O(poly log n) rounds.
Together with other tools we develop, we show a (2 + ε) APSP approximation in O(log2 n/ε)
rounds. This is the first sub-polynomial constant-factor APSP approximation, and is an expo-
nential speedup over previous results. Following our work and using our distance tools, [16]
show further improvement, bringing the round complexity down to O(poly log log n), leading
to the following question.

Question 2. Is it possible to obtain an o(log log n)-round good APSP approximation?

In [27], we enhance our tools using a technique we call partition trees, to develop a sparsity-
aware sparsification tool to answer this in the affirmative. We construct O(log n)-spanners and
approximate APSP (with polylogarithmic approximation factors) in O(1) rounds.

The Matrix Multiplication Cube
We describe the following visualization accompanying our techniques. How does one multiply
matrices? By definition, given two n by n matrices, S and T , matrix P is their product if



∀i, j ∈ [n] : P[i, j] =
∑
k∈[n]

S [i, k]T [k, j] .

Typically, in introductory linear algebra courses, this is shown via a 2-dimensional depic-
tion: “multiply (element-wise) a row of S by a column of T , and sum the values”. Instead, we
use the 3D Cube of Matrix Multiplication (see e.g. [2, 3]). Formally, it is an n × n × n cube,
where entry (i, j, k) corresponds to S [i][k]T [k][ j]. Two dimensions correspond to S and T , and
each index in the third dimension represents a page, where P is the sum of all n pages.

Figure 1: An illustration of the multiplication cube. The green (left) and blue (right) shapes
correspond to S (transposed) and T , respectively, the brown (center) are point-wise multiplica-
tions, and the orange (bottom) are P. The value of every brown shape is the product of its green
and blue projections. The value of every orange shape is the sum of the brown values above it.

The cube is useful for visualizing parallel and distributed algorithms. Assume k compu-
tational devices. A subcube V1 × V2 × V3, where V1,V2,V3 ⊆ [n], corresponds to the task
S [V1,V2] · T [V2,V3], where S [V1,V2] is the submatrix limited to rows V1 and columns V2 of S ,
and similarly for T . Thus, a partition of n3 into k subcubes breaks the larger matrix multiplica-
tion into smaller tasks.

Efficiently partitioning the cube is heavily dependant on the distributed setting considered.
To compute the value at index (i, j, k), a device needs both its projections, S [i][k] and T [k][ j].
How can we factor in the (potentially different) sparsities of S and T? Is it easier to learn
the projections onto S than those onto T? Computing the values of P requires computational
devices computing intermediate values “above” one another (in the figure) to communicate –
is this communication more expensive than that for learning the projections onto S and T?

We split our approaches for overcoming these challenges to input-sparsity awareness (S
and T ) and output-sparsity awareness (P). Designing output-sparsity aware algorithms is prob-
lematic as P, by definition, is not known in advance. Thus, this necessitates adaptive behaviour
throughout the communication, before the output is fully computed. Our most complex algo-
rithm, Filtered Sparse Matrix Multiplication, deals with dense output, where only some sparse
set of it (matching specific predicates) is desired. Thus, already at the stage when only some
of the intermediate computation is performed, we deduce which values of P we want to fully
compute.

Note that in [27], we extend this further to deal with subgraph existence problems and not
just matrix multiplication and distance computations. What if we use higher dimensions (4, 5,
6, etc.)? What if we reverse the information flow such that data flows into the cube from the



bottom (orange shapes) instead of out? What if, in some dimensions, we can perform quantum
computation? For instance, reversing the information flow w.r.t. P turns a boolean matrix
multiplication algorithm to one that finds all triangles (three fully connected nodes) in a graph.
Thus, the cube amounts to a unified perspective for seemingly unrelated distributed problems
– intuition w.r.t. a property of the cube is carried over to many problems.

Warmup: Using the MM Cube for Input Sparsity Awareness
for exact APSP
In [11], we investigate how to perform matrix multiplication faster if it is given that the two
input matrices are sparse. As a warmup, we leverage this to design faster exact APSP algo-
rithms for sparse graphs. Later, we show how to extend the matrix multiplication algorithms
to also take into account the sparsity of the output matrix, which allows approximating APSP
exponentially faster, even on general graphs.

A central challenge in non-sequential matrix multiplication is high skew in input matrices,
as Ballard et al. [5] describe in the parallel setting: “[We] are not aware of any algorithms
that dynamically determine and efficiently exploit the structure of general input matrices. In
fact, a common technique of current library implementations is to randomly permute rows and
columns of the input matrices in an attempt to destroy their structure and improve compu-
tational load balance." We show deterministic algorithms overcoming this, as well as other
challenges which arise in distributed settings and not in parallel or sequential ones.

In Congested Clique, the round complexity is typically dominated by the node participat-
ing in the most communication. This leads us to defining two main goals: minimizing the total
message count, and implementing load balancing mechanisms to ensure the round complexity
is governed by the average number of messages each node communicates, and not the maximal.

On a high-level, our approach is threefold, with the first part minimizing the total number
of messages sent, and the latter parts load balancing among the nodes.

First, split the n × n × n matrix multiplication cube into n equally sized sub-cubes whose
dimensions are determined dynamically, based on the sparsity of the input matrices. Fix some
values a, b. We partition P into ab sub-matrices of size n/a×n/b, denoted by Pi, j for i ∈ [a], j ∈
[b], and assign n/ab nodes, denoted Ni, j, for computing Pi, j.

Second, notice that permutations of rows of S and columns of T result in a reversible
permutation of P. Thus, we permute the S and T such that the number of non-zero entries
required for computing each n/a×n/b sub-matrix is roughly the same for each sub-matrix. We
call the two permuted matrices, S ′ and T ′, sparsity-balanced matrices with respect to (a, b).
The rest of our algorithm deals with computing the product of such matrices.

Third, we assign the computation of pages of sub-matrices to nodes in a non-consecutive
manner. Each Pi, j is the sum of n sub-pages Pi, j,`. Each v ∈ Ni, j computes some of the Pi, j,`

sub-pages and sums them locally. The local sums are then aggregated, to obtain Pi, j. We assign
sub-pages to nodes in a non-consecutive manner, such that each node receives a roughly equal
number of non-zero entries to compute its assigned sub-pages (See Figure 2).

While the above ensure nodes receive roughly the same number of messages, it is paramount
that nodes also send a roughly equal number of non-zero matrix entries. We rearrange the en-
tries of S and T held by each node such that each holds a roughly equal amount of non-zero
entries. In this step, we do not permute S or T , rather, we merely redistribute their entries.

Crucially, these assignments are not global knowledge, leading to routing challenges. That
is, for every Pi, j, nodes Ni, j decide which matrix entries are received by which node, yet, this is



a

b

S’

T’

P’

Figure 2: An illustration of the multiplication cube for P′ = S ′T ′. Each sub-matrix is assigned
to n/ab nodes, with a not necessarily consecutive page assignment that is computed on-the-fly
to minimize communication.

unknown to other nodes who need to send the entries. Likewise, the redistribution of S and T is
not known to all. However, clearly, a node must know the destination of each message it sends.
We design our solution such that every node computes a small set of nodes potentially holding
information it requires, and request it from them. Upon receipt of the request, the nodes can
compute whether they actually have the relevant information, and, if so, send it over.

For matrix M, let nz(M) denote the total number of non-zero entries in M, and let ρM =

dnz(M)/ne denote the density of M. Our first main contribution is the following.

Theorem 1. Given two n × n matrices S and T , it is possible to deterministically compute
P = S T over a semiring, within O((ρSρT )1/3/n1/3 + 1) rounds in Congested Clique.

An important case of Theorem 1, especially when squaring the adjacency matrix of a graph,
is when the sparsities of the input matrices are roughly the same.

Corollary 2. Given two n×n matrices S and T , where O(nz(S )) = O(nz(T )) = m, it is possible
to compute P = S T over a semiring, in O(m2/3/n + 1) rounds in Congested Clique.

For m = O(n2), Corollary 2 gives the same O(n1/3) rounds complexity as that of [10], the
state-of-the-art for non-sparse matrix multiplication. Our algorithm is fast also when only one
of the matrices is sparse, as stated in the following.

Corollary 3. Given two n × n matrices S and T , where min{nz(S ), nz(T )} = m, it is possible to
compute P = S T over a semiring, in O((m/n)1/3 + 1) rounds in Congested Clique.

This allows computing powers that are larger than 2 of a sparse input matrix. We cannot
repeatedly square a matrix, as this may require multiplying dense matrices, yet, we can repeat-
edly increase its power by 1. This gives the following for exact APSP, whose comparison to the
state-of-the-art depends on the trade-off between the number of edges and the graph diameter.

Theorem 4. Given an unweighted graph G, there is a deterministic algorithm that computes
APSP in O(D((m/n)1/3 + 1)) rounds in the Congested Clique model.

To compare, the best known complexity for general graphs is O(n1−2/ω) [10] (currently
roughly O(n0.158)). For a graph with m = o(n4−6/ω/D3) (currently o(n1.474/D3)), our algorithm
is faster.



O(1) APSP approximation in O(poly log log n) rounds
In [9], we turn our attention to general graphs, and aim to compute a constant approximation
of APSP in sub-polynomial rounds.

Distance Products. We start from the basic idea of using matrix multiplication to compute
distances. Specifically, if A is the weighted adjacency matrix of a graph G, it is well known that
distances in G can be computed by iterating the distance product A ? A, defined as

(A ? A)[i, j] = min
k

(
A[i, k] + A[k, j]

)
,

that is, the matrix multiplication over the min-plus semiring.
However, as A ? A can be dense even if A is sparse (e.g. a star graph), iterative squaring

is not guaranteed to be efficient. Moreover, our goal is to compute distances in general graphs
and so we do not even assume A itself is sparse. We thus take a step back, first showing several
distance computation building blocks, before directly tackling end-problems such as APSP.

Our Distance Tools. The key observation is that building blocks for distance computation
are actually based on computations in sparse graphs or subgraphs. Concrete examples include:

• k-nearest: Compute distances for each node to the k nodes closest to it.

• (S , d, k)-source detection: Given a set of sources S , compute the distances for each node
to the k sources closest to it, using paths of at most d hops.

• distance through sets: Given a set of nodes S and distances to all nodes in S , compute
the distances between all nodes using paths through nodes in S .

For all of these problems, there is a degree of sparsity we can hope to exploit if k or |S | are
small. For example, the (S , d, k)-source detection problem, requires the multiplication of a
dense adjacency matrix with a possibly sparse matrix, depending on the size of S . However,
for any S of polynomial size, the round complexity of the input sparsity aware algorithm is
polynomial. An interesting property in this problem is that the output matrix is also sparse,
giving room for improvement. As another example, in k-nearest both input matrices are sparse,
which makes it fast using the previous sparse matrix multiplication algorithm. However, this
does not exploit the sparsity of this problem to the end: we are interested only in computing
the k nearest nodes to each node, hence there is no need to compute the full output matrix.
The challenge in this case is that we do not know the identity of the k closest nodes before the
computation.

To exploit this sparsity we design new matrix multiplication algorithms that, in particular,
can sparsify the output matrix throughout its computation, and get a complexity that depends
only on the size of the output we are interested in. The core reason that significant challenges
arise in output sparsity awareness w.r.t. input sparsity awareness is that the input matrices are
known beforehand, while clearly this does not hold in the output case. Thus, we are required to
recognize patterns in the output during the computation and perform actions affected by these
patterns. In particular, our approaches uses both binary search and sorting, in a novel way,
to efficiently perform the summation step of the matrix multiplication, while abstracting away
effects of the output patterns. We obtain the following matrix multiplication variants.

• One variant assumes that the sparsity of the output matrix is known.



• The other sparsifies the output on the fly, keeping the ρP smallest entries in each row.

For these two scenarios, we obtain round complexities

O
( (ρSρTρP)1/3

n2/3 + 1
)
, and O

( (ρSρTρP)1/3

n2/3 + log n
)
,

respectively, improving over our input sparsity aware matrix multiplication for ρP = o(n).

Applications of Sparse Matrix Multiplication. Using output sensitive sparse matrix multi-
plication, we obtain faster distance tools:

• We solve k-nearest in O
((

k
n2/3 + log n

)
log k

)
rounds.

• We solve (S , d, k)-source detection in O
((

m1/3 |S |2/3

n + 1
)

d
)

rounds, where m is the number
of edges in the output graph; note that dependence on d becomes linear in order to exploit
the sparsity.

In concrete terms, with these output sensitive distance tools we still get subpolynomial running
times even when the parameters are polynomial. For example, we get the distances to the
Õ(n2/3) closest nodes in Õ(1) rounds. Note that though our final results are only for undirected
graphs, these distance tools work for directed, weighted graphs.

Hopsets. An issue with our (S , d, k)-source detection algorithm is that in order to exploit the
sparsity of the matrices, we must perform d multiplications to learn the distances of nodes at
hop-distance at most d from S . Hence, to learn the distances of all nodes from S , we need to
do n multiplications, which is no longer efficient. To overcome this challenge, we use hopsets.
Given a (β, ε)-hopset H, it is enough to look only at β-hop distances in G ∪ H to approximate
distances by a factor of (1 + ε). Using our source detection algorithm together with a hopset
allows getting an efficient algorithm for approximating distances, as long as β is small enough.

However, the round complexities of all current hopset constructions [17, 18, 23] is at least
O(ρ) for a hopset of size nρ. This is a major obstacle for efficient shortest paths algorithms,
since, based on recent existential results, there are no hopsets where both β and ρ are polyloga-
rithmic [1]. Nevertheless, we show that our new distance tools build a hopset in a time that does
not depend on its size. In particular, we show how to implement a variant of the recent hopset
construction of in [18] in O( log2 n

ε
) rounds. The size of our hopset is Õ(n3/2), hence constructing

it using previous algorithms requires at least Õ(
√

n) rounds.

Applying the Distance Tools. As a direct application of our source detection and hopset
algorithms, we obtain an algorithm for computing distances from k sources at once (k-SSP).
This is the first sub-polynomial result, with such approximations, for polynomial k.

Theorem 5. There is a deterministic (1 + ε)-approximation algorithm for weighted undirected
k-SSP that takes

O
((k2/3

n1/3 + log n
)
·

log n
ε

)
rounds in the Congested Clique, where S is the set of sources. In particular, the complexity is
O( log2 n

ε
) as long as k = O(

√
n · (log n)3/2).



In turn, this forms the basis of our (3 + ε)-approximation for weighted APSP. To obtain a
(2+ε)-approximation for unweighted APSP, the idea is to deal separately with paths containing
a high-degree node and paths without. A crucial ingredient is showing that in sparser graphs
we can efficiently compute distances to a larger set S .

Theorem 6. There is a deterministic (2+ε)-approximation algorithm for unweighted undirected
APSP in the Congested Clique model that takes O( log2 n

ε
) rounds.

Our approximation is almost tight for sub-polynomial algorithms in the following sense.
As noted by [26], a (2 − ε)-approximate APSP in unweighted undirected graphs is essentially
equivalent to fast matrix multiplication, so obtaining a better approximation in complexity be-
low O(n0.158) would result in a faster algorithm for non-sparse matrix multiplication in the
Congested Clique. Likewise, a sub-polynomial-time algorithm with any approximation ratio
for directed graphs would give a faster matrix multiplication algorithm [14].

As stated above in the overview, this concludes the first sub-polynomial constant-factor
APSP approximation, showing an exponential speedup over previous results which all required
polynomial rounds for such an approximation. Following this work and using the above de-
scribed distance tools, [16] bring the complexity down to O(poly log log n). In weighted graphs,
an O(log1+ε n)-approximation to APSP is known in a similar round complexity [8].

O(poly log n) APSP approximation in O(1) rounds
In [15], we ask whether it is possible to spend just O(1) rounds in order show a good approxi-
mation of APSP. We answer this by showing poly-logarithmic approximations to APSP in such
a round complexity.

Spanners. A k-spanner is a sparse subgraph, preserving distances up to a factor of k. Any
graph has a (2k − 1)-spanner with O(n1+1/k) edges, which is assumed to be tight by the Erdős
Girth Conjecture [19]. We aim for spanners with O(n) edges, requiring k = Θ(log n). The
classic algorithm of [6] builds (2k − 1)-spanners with O(kn1+1/k) edges in expectation, and is
simulated in O(k) rounds. Faster, poly(log k)-round algorithms appear in [8, 31]. Specifically,
[31] shows a randomized (deterministic) construction of (2k−1)-spanners (O(k)-spanners) with
Õ(n1+1/k) edges (O(kn1+1/k) edges). For weighted undirected graphs, [8] show a randomized
construction of O(k1+o(1))-spanners with O(n1+1/k · log k) edges.

The Locality Barrier. Intuitively, these take poly(log k) rounds as the locality of spanners is
linear in k. In the LOCAL model, where a node can learn its entire t-neighborhood in t rounds,
constructing (2k− 1)-spanners with O(n1+1/k) edges takes Ω(k), assuming the Erdős Girth Con-
jecture [13]. The connection between LOCAL and Congested Clique is captured via graph
exponentiation, whereby nodes learn their 2i-neighborhoods in round i. This requires much
bandwidth, nevertheless, is sometimes used with other ideas, leading to O(log t) algorithms in
Congested Clique based on t-round algorithms in LOCAL (e.g. [16, 31]). In variants of MPC,
this approach is conditionally tight [22], for certain algorithms.

We break through the locality barrier, by utilizing techniques from our distances computa-
tions (above), our partition trees tool (see ??), as well as recent developments for computing a
minimum spanning tree (MST) in Congested Clique in O(1) rounds [25, 30].

A powerful ingredient is our sparsification tool, Theorem 7, based on our partition trees
(??), that finds spanners for graphs F connecting some nodes in G.



Theorem 7. Let G = (V, E) be a Congested Clique, and F = (VF , EF) a graph with VF ⊆ V,
|VF | = N nodes, |EF | = M edges, and maximum degree ∆F . There is an O( M1/3·N2/3

n + 1)-round
algorithm in G that finds a (2k − 1)-spanner for F with O(M1/3 · N2/3+1/k) edges.

In a recent work on MST computation, given F = (VF , EF), |VF | = N, |EF | = M, [30] uses
the following. Let d = 2M/N and partition VF into S 1, · · · , S √d, where |S i| = O(N/

√
d) and

|E(S i, S j)| = O(N). Then, the edges E(S i, S j) are sent to some node, which replaces them with
an MST, with |S i| + |S j| edges, on the graph induced by S i × S j. Since |S i ∪ S j| = O(N/

√
d),

each MST has O(N/
√

d) edges, and all MSTs have d · O(N/
√

d) = O(
√

M · N) edges in total.
We show Theorem 7 by partitioning into d1/3 sets, and follow the notion where each node

sparsifies the edges it gets, by returning a spanner (instead of an MST). Our partitioning in
[15] is randomized, and using our partition trees technique (see ??), we show a deterministic
version. The key behind this is that applying our partition trees technnique on the “subgraph”
H = (VH, EH) which is simply one edge (i.e. VH = {a, b}, EH = {{a, b}}) redistributes the edges
of G = (V, E) such that every v knows some set of edges Ev, where {Ev|v ∈ V} is a partition
of E, and the amount of nodes incident to each Ev is rather small. Based on this approach, we
show a very powerful partitioning which leads to Theorem 7.

Unweighted Graphs We apply Theorem 7 on cluster graphs generated by a smart sampling
procedure. Let d = 2m/n. We construct a cluster graph C. Find a hitting set D ⊆ V (every
node is either in D or has at least one neighbor in D) of size O(n log d/d). Then, each node in
D is denoted the center of a cluster in C, and each node in V \ D joins the cluster of one of its
neighbors in D. For any two clusters C1 and C2 in C, connect them with an edge if, in G, any
node in C1 is connected to any node in C2. As C has M ≤ m edges but only N = O(n log d/d)
nodes, we can apply Theorem 7 on C, to get a spanner with ` = O(M1/3 ·N2/3+1/k) = O((dn)1/3 ·

(n log d/d)2/3+1/k) = O(n1+1/k) edges in O( M1/3·N2/3

n ) = O(1) rounds.
Any α-spanner HC of Cwith ` edges can be translated to an O(α)-spanner H for G with `+n

edges. Replace each edge in HC by an edge in G that connects two nodes in the corresponding
clusters. Then, for each v ∈ V , add to H the edge that connects it to the center of the cluster v
belongs to. H is an O(α)-spanner for G, as any path PC of length α in HC translates to a path P
in H through α + 1 clusters. As the radius of each cluster is 1, P has length O(α).

However, it is hard to find a hitting set with |D| = O(n log d/d). In graphs with minimum
degree d, a sampling procedure suffices, yet d is our average degree. Thus, we bucket G, where
bucket i contains edges Ei, incident to nodes with degree in [2i, 2i+1), and run the above, for
bucket i1 computing Ci and HCi . The size of all spanners, where ∆ is the maximum degree, is:

|

log ∆⋃
i=0

Hi| = |H0| +

log ∆∑
i=1

O((ni/2i)2/3+1/k(n2i)1/3) ≤ O(n) +

log ∆∑
i=1

O(n1+1/k)i2/3/2i/3 = O(n1+1/k)

Finally, we convert HCi to Hi which is a spanner for edges Ei of G, and H =
⋃

i Hi is
a spanner of G, as required. However, as above, |Hi| ≤ |HCi | + n, where the +n is due to
connecting each node its cluster center. This may result in |H| = O(n1+1/k + n log ∆), instead
of O(n1+1/k). To solve this, we construct the graphs Ci such that for each v ∈ V , all clusters v
belongs to have the same center. Hence, each node adds at most only one edge in total, which
means that across all Hi at most n edges are added, and not n edges per Hi.

1Except for i = 0, where we define HCi as all edges incident to a node of degree at most 2.



Theorem 8. Given k and an undirected unweighted graph G, there is an O(1)-round Congested Clique
algorithm constructing an O(k)-spanner for G with O(n1+1/k) edges, w.h.p.

Choosing k = Θ(log n) gives an O(log n)-spanner of size O(n), thus implying the following.

Theorem 9. Given an undirected unweighted graph G, there is an O(1)-round Congested Clique
algorithm computing an O(log n)-approximation of APSP w.h.p.

Weighted Graphs We develop two additional tools to extend our results to weighted graphs.
First, we split the edges into buckets of exponentially increasing weights Bl = {e | 2l ≤ w(e) <
2l+1}, and construct, in parallel, a spanner for each bucket using the unweighted algorithm.
The union of these spanners is an O(k)-spanner for G, yet with a total of O(n1+1/k log n) edges.
To obtain a spanner with O(n1+1/k) edges (yet O(k log n) stretch), we draw a connection to
MSTs. We construct an MST using [30] and use it to contract the graph to n/ log n nodes, while
preserving distances up to a factor of O(log n). This is done by replacing low diameter subtrees
of the MST, each with a single node, and due to the property that the edges of the MST cannot
be the heaviest along a cycle, we show that graph distances are stretched only by O(log n).
Then, we execute the above spanner algorithm on the contracted graph, and as the number of
nodes is n/ log n, the resulting spanner has O((n/ log n)1+1/k log (n/ log n)) = O(n1+1/k) edges.

Theorem 10. Given an undirected weighted graph G, there is an O(1)-round algorithm in the
Congested Clique model that computes an O(log2 n)-approximation of APSP, w.h.p.

Conclusion
The research community has recently made rapid progress in APSP approximations in the
Congested Clique model, mainly based on algorithms solving variants of matrix multiplica-
tion. Currently, the state-of-the-art is a constant approximation in O(poly log log n) rounds,
or an O(log n) approximation in constant rounds (O(poly log n) if the graph is weighted). We
hypothesize that the community is close to achieving a constant approximation in constant
rounds barring a few additional insights. This is certain to lead to several new exciting research
directions in the upcoming years.

Concretely, it is interesting to see whether the techniques behind the two extreme results
detailed above (constant approximation in O(poly log log n) rounds or O(poly log n) approxi-
mation in constant rounds) can be merged in order to show a better overall result. These are
active research directions which the community is currently investigating.
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