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The 1980’s was a golden period for Boolean circuit complexity lower bounds.
There were major breakthroughs. For example, Razborov’s exponential size
lower bound for monotone Boolean circuits computing the Clique function and
the Razborov-Smolensky superpolynomial size lower bounds for constant-
depth circuits with MODp gates for prime p. These results made researchers
optimistic of progress on big lower bound questions and complexity class sep-
arations. However, in the last two decades, this optimism gradually turned into
despair. We still do not know how to prove superpolynomial lower bounds for
constant-depth circuits with MOD6 gates for a function computable in expo-
nential time.

Ryan Williams’ exciting lower bound result of 2011, that nondeterministic
exponential time does not have polynomial-size unbounded fanin constant-
depth circuits with MODm gates for any composite m, has renewed optimism
in the area. The best part is that his approach is potentially applicable to other
lower bound questions.

In this wonderful article, Rahul Santhanam explores this theme of connec-
tions between improved SAT algorithms and circuit lower bounds.
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Abstract

I discuss recent progress in developing and exploiting connections be-
tween SAT algorithms and circuit lower bounds. The centrepiece of the
article is Williams’ proof that NEXP * ACC0, which proceeds via a new
algorithm for ACC0-SAT beating brute-force search. His result exploits a
formal connection from non-trivial SAT algorithms to circuit lower bounds.
I also discuss various connections in the reverse direction, which have led to
improved algorithms for k-SAT, Formula-SAT and AC0-SAT, among other
problems.

1 Introduction
Theoretical computer science suffers from a dichotomy between the algorithmic
endeavour and the complexity-theoretic endeavour. Algorithmists strive to de-
sign the most efficient algorithms for problems of interest, while complexity the-
orists investigate which problems are hard to solve, and why. Algorithmists focus
on concrete problems, while complexity theorists often work in a more abstract
framework, proving general theorems about computation. Algorithmists use con-
structive methods, while the enterprise of proving complexity lower bounds seems
an inherently non-constructive one.

But is this dichotomy fundamental? At some level, algorithmists and com-
plexity theorists are studying two sides of the same question: which is the most
efficient solution for a problem? A priori, one would imagine that a deep under-
standing of the structure of a computational problem would assist both in design-
ing the most efficient solution possible, as well as proving that no more efficient
solution exists. In part because the theory of computation is still at a fairly early
stage in its development, and in part because the basic questions seem to be very
difficult, this has not often been the case so far. The algorithms community and
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the complexity theory community have pursued their research programs more or
less independently.

Recent developments have the potential to change this, opening the possibility
of greater interaction and accelerated progress in both areas. These developments
hint at a complicity between algorithms and lower bounds, which is ironic in that
these endeavours seem superficially to be in opposition.

The most significant such development is the recent work of Williams [37, 38]
proving that NEXP * ACC0. This work has attracted a great deal of interest, since
lower bound breakthroughs are rare. Though the result is interesting in itself,
what is more interesting is the conceptual message of Williams’ work, which is
that algorithms for Satisfiability (SAT) can be used to prove lower bounds, and
that there are strong connections between the two endeavours.

In this article, I give a sampler of work in the past couple of decades which
shares this message. I make no claim that this is an exhaustive survey of the
connections between SAT algorithms and lower bounds. Rather, I aim to give
illustrations of the various connections that exist, and an indication of what the
most promising research directions might be. This is a very actively growing area,
and my hope is that this article could serve as a rough “road-map” for researchers
wishing to work in this area, or else as a quick digest for those who are curious
about the recent developments.

1.1 Historical Context
The connection between lower bounds and algorithms can be traced back to the pi-
oneering work of Yao [39] and Blum & Micali [8] on pseudo-random generators.
They showed how to construct cryptographic pseudo-random generators based on
strong average-case circuit lower bounds. Cryptographic pseudo-random genera-
tors can be used to define sub-exponential time algorithms for problems in BPP,
beating the trivial brute-force bound. Indeed, this implication was explicitly noted
in Yao’s paper [39].

Yao’s connection is in a sense a byproduct of a conceptual machinery de-
signed for cryptographic problems. In an influential paper, Nisan & Wigderson
[28] adapted the notion of a pseudo-random generator to the context of complexity
theory, and gave tighter implications from circuit lower bounds to pseudo-random
generators, and vice versa. Since then, a sequence of papers [23, 26, 20], have
established progressively tighter and more refined versions of these implications,
and it is now known that circuit lower bounds for E (linear exponential time)
against a class C of circuits are more or less equivalent to pseudo-random gen-
erators which are resilient to statistical tests from C, for essentially any natural
class C of circuits. While pseudo-random generators imply improved determin-
istic simulations for problems in BPP, the converse is not the case. However,
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Kabanets & Impagliazzo [24] have shown that sub-exponential time algorithms
for the Polynomial Identity Testing (PIT) problem actually imply circuit lower
bounds against arithmetic circuits. A weak converse of this result is known as
well, showing a deep connection between algorithms and circuit lower bounds in
this setting.

Though these results in the theory of pseudo-randomness are fairly strong, the
connections haven’t led to much progress either on lower bounds or on algorithms.
The reason is that the known algorithmic ideas for solving PIT fall well short of
having implications for pseudo-random generators, and hence for lower bounds.
We won’t discuss the pseudo-randomness literature further in this survey, but we
note that it heavily influenced the formation of the connections we will discuss
both historically, as well as methodologically.

There are other areas of theoretical computer science where progress on hard-
ness results has gone hand-in-hand with new algorithms. This is the case, for
example, with the recent work on semi-definite programming algorithms and the
Unique Games conjecture [31], with the caveat that the notion of hardness there
is conditional, i.e., based on reductions from presumed hard problems rather than
on proven lower bounds. There is also the sophisticated and ambitious Geometric
Complexity Theory (GCT) approach of Mulmuley & Sohoni [27] towards proving
complexity lower bounds, which relies ultimately on algorithmic conjectures. We
do not discuss these other examples of complicity between algorithms and lower
bounds, but they do add to the evidence that there is something fundamental about
this phenomenon.

1.2 Plan of the Article

Following on a short section establishing relevant notation, there are three main
sections to this article discussing recent work, and a final section speculating on
future research directions. The first section discusses a series of papers by Paturi,
Zane and others proving structural theorems about CNF formulas which were then
exploited both in an algorithmic context and to prove lower bounds. These were
the earliest papers showing connections between exact algorithms for Satisfiabil-
ity and circuit lower bounds. The middle section discusses the breakthroughs of
Williams, which demonstrate and use a formal connection from SAT algorithms
to lower bounds. The final section discusses various subsequent works which ex-
ploit connections in the reverse direction to give new and improved algorithms for
variants of SAT such as Formula-SAT and AC0-SAT.

Throughout this article, I will favour heuristic arguments over precise ones in
cases where the former are more helpful in establishing intuition.
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2 Preliminaries
I assume knowledge of the basic concepts of complexity theory. The book by
Arora and Barak [1] and the Complexity Zoo (which can be found at the address
http://qwiki.caltech.edu/wiki/ComplexityZoo) are good references.

I will be dealing with several variants of Satisfiability. For a positive integer
k, k-SAT is the satisfiability problem for k-CNFs. CNF-SAT is the satisfiability
problem for CNFs without any restriction on clause size. Formula-SAT is the
satisfiability problem for formulas over the De Morgan basis. Circuit-SAT is the
satisfiability problem for Boolean circuits. In general, given a class C of circuits,
C-SAT is the satisfiability problem for circuits in C. I will refer simply to “SAT”
when I wish to speak of the Satisfiability problem generally rather than of a spe-
cific variant.

Definition 1. A parametric problem p-L consists of a language L ⊆ {0, 1}∗ to-
gether with a parameter function n : {0, 1}∗ → N. Given a function t : N×N→ N,
we say that p-L is solvable (resp. probabilistically solvable) in time t if there is a
deterministic (resp. probabilistic) algorithm which decides L correctly and runs
in time t(|x|, n(x)) on all inputs x.

I will only be considering parametric versions of SAT variants, and for these
problems there is a very natural notion of parameter: the number of variables in
the formula. For any SAT variant L, p-L is the parametric problem corresponding
to L.

The notion of “non-trivial” solvability of SAT can now be defined.

Definition 2. A SAT variant L is said to have a non-trivial algorithm if p-L is
solvable in time t, where t(m, n) = O(poly(m)2n−ω(log(n))).

There is a natural notion of the "savings" an algorithm for SAT achieves over
brute-force search. Note that the brute-force search algorithm operates in time
2npoly(m).

Definition 3. Given a function c : N × N → N, a SAT variant L is said to have
savings (resp. probabilistic savings) c if p-L is solvable (resp. probabilistically
solvable) in time t, where t(m, n) = O(poly(m)2n−c(m,n)).

Thus a non-trivial algorithm achieves savingsω(log(n)), and NP = P iff 3-SAT
has savings n − O(log(n)).

For information on the best known upper bounds for variants of SAT, refer to
the survey by Dantsin and Hirsch [11]. Here I only discuss upper bound tech-
niques and results which connect in some way to lower bounds.

However, it might be useful to say something about the common algorith-
mic paradigms for SAT. There are essentially two commonly used paradigms: the
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DLL paradigm and the local search paradigm. Algorithms belonging to the DLL
paradigm operate as follows. At each stage in the algorithm, a fixed rule is used
to select a variable in the formula and a value to assign to it. With the variable set
accordingly, the formula is simplified according to standard simplification rules,
and the algorithm proceeds to the next stage. If at any stage, the formula simpli-
fies to “true”, the algorithm halts, since a satisfying assignment has been found. If
it simplifies to “false”, the algorithm “backtracks” by re-setting the most recently
set variable to the other possible value and recursing. Intuitively, a DLL proce-
dure explores a tree of candidate satisfying assignments, where nodes correspond
to variables and edges to values which can be assigned to a given variable, with
leaves being labelled “true” or “false”. The procedure aims to construct and ex-
plore this tree in the most efficient possible manner, and the number of leaves of
the tree gives a bound on the running time.

Algorithms belonging to the local search paradigm operate as follows. An
initial assignment is chosen, and if this assignment is not already satisfying, the
algorithm explores the space of assignments by changing the value of one vari-
able at a time, with the variable whose value is to be changed determined by using
some local measure of “progress”. This exploration continues for a fixed num-
ber of steps, unless a satisfying assignment is found in the process. “Re-starts”
are also allowed, with the algorithm choosing a new assignment and starting its
exploration from scratch.

It seems as though other kinds of algorithmic ideas could potentially be useful
as well, but there has been little rigorous analysis of alternatives to DLL and local
search. One exception, jumping ahead, is Williams’ algorithm for ACC0-SAT
[38], which uses dynamic programming.

3 Algorithms for k-SAT and Lower Bounds for
Depth-3 Circuits

To the best of my knowledge, the first instance in the literature where a connection
is explicitly drawn between upper bounds for SAT and circuit lower bounds is a
paper by Paturi, Pudlak and Zane [30] giving probabilistic savings n/k for k-SAT.
They also derandomize their algorithm to achieve savings n/2k. The inspiration
for their algorithm and analysis is a lemma which they call the "Satisfiability Cod-
ing Lemma". This lemma is then used by them to give tight bounds for the circuit
size of unbounded fan-in depth-3 circuits computing Parity.

Before describing their ideas, it might be good to step back a bit and give
some general intuition for why there are connections between non-trivial SAT
algorithms and circuit lower bounds. Suppose we wish to design a non-trivial al-
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gorithm for C-SAT, where C is some natural class of circuits. For example, k-SAT
corresponds to C being the class of depth-2 circuits with bottom fan-in bounded
by k, and CNF-SAT corresponds to C being the class of depth-2 circuits. Intu-
itively, in order to design and analyze a non-trivial algorithm, we require some
understanding of the structure of instances. Suppose we are able to isolate some
special property that the instances to our problem share, eg., some property com-
mon to all k-CNFs, then we might be able to exploit this to achieve savings over
brute-force search. The point is that the same property also indicates some lim-
itation of the circuit class C under consideration, and by identifying a Boolean
function f which does not have this property, we can prove a lower bound against
C. Thus, it is fundamental to this connection between upper bounds and lower
bounds that SAT is a meta-algorithmic problem - the instances to the problem are
themselves computational objects, such as formulas or circuits.

Of course, the key to achieving good upper bounds as well as tight lower
bounds is identifying the right property. The Satisfiability Coding Lemma shows
that isolated solutions to k-CNFs have short descriptions on average, and hence
that there can’t be too many of them. Here an isolated solution is a satisfying
assignment such that none of its neighbours in the Hamming cube are satisfying
assignments to the same formula. Note that the property identified in the Satisfia-
bility Coding Lemma is rather specialized. Parity, for example, has 2n−1 isolated
solutions. Indeed Parity is in a sense the function that violates the property in
the Satisfiability Coding Lemma most drastically, and intuitively this is why the
Lemma is also useful in proving tight circuit size lower bounds for Parity.

To describe the Lemma more precisely, we need some notation. Given a for-
mula φ on n variables and an integer j, 0 6 j 6 n, call a satisfying assignment w
to the variables of φ j-isolated if exactly j neighbours of y in the Hamming cube
are not satisfying assignments to φ. An isolated solution is one that is n-isolated.

Lemma 4. [30] There are polynomial-time computable functions Enc and Dec
such that the following holds. Let φ be a k-CNF formula on n variables, and w be a
j-isolated solution to the variables, where 0 6 j 6 n. Then Dec(Enc(φ, π,w)) = w
for any permutation π on [n], and moreover, on average over uniformly random
choice of π, |Enc(φ, π,w)| 6 n − n/k.

The intuition behind the proof of Lemma 4 is that isolated solutions lead to
many critical clauses. Given a solution w, a critical clause is one for which exactly
one of the literals is true. An isolated solution w has at least n critical clauses, one
for each assignment to a variable in w. If there were a variable without a critical
clause corresponding to it, then flipping the value of that variable would result in
a satisfying assignment, contradicting the fact that w is isolated.

Critical clauses can be used to save on variables when searching the space of
solutions. Let w be an isolated solution. Imagine a process where variables are
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chosen in a random order and set in φ to their value in w, excepting when there’s
a unit clause containing that variable. If there’s a unit clause, the variable is set
to satisfy that clause. The point is that if variables are chosen in random order,
then for a critical clause of length k, there is a probability at least 1/k that the
variable (say x) corresponding to the true literal in that clause is chosen last. In
this case, the clause has already been reduced to a unit clause by the time x is set,
and therefore x is forced rather than having to be set by w. So we don’t need to
store the value of x in w - in some sense, it can be recovered from the formula
itself. Since there at least n critical clauses, on average at least n/k variables are
forced in this process, and hence an isolated solution can be compressed to only
store values of variables that are not forced, which saves n/k bits. In general, for a
j-isolated solution, j/k bits are saved, using the same argument. This essentially
gives the proof of Lemma 4.

It is easy to imagine how Lemma 4 can be used to achieve savings for Unique-
k-SAT, the version of k-SAT where there’s a promise that the input formula has
either zero or one satisfying assignments. Clearly, any satisfying assignment in
such a case is isolated, and hence it can be compressed on average. Intuitively,
one just needs to search the compressed representations to find a solution if one
exists, and this reduces the size of the search space to 2n−n/k from 2n.

A variation of this argument actually gives the same upper bound for k-SAT
without any restriction on number of satisfying assignments. Consider a k-CNF
φ. If there is a solution w which is j-isolated for large j, then it can be compressed
by Lemma 4 and hence can be found much more quickly than brute-force search.
If on the other hand, if all solutions are only j-isolated for small j, then intuitively
there are many solutions, which means that a random solution is likely to work.
In the paper by Paturi, Pudlak and Zane, this tradeoff idea is exploited nicely to
prove the following result.

Theorem 5. [30] k-SAT has probabilistic savings n/k.

This was a huge improvement over the previous best known result for general
k, which only gave savings n/g(k) for some exponential function g. Because I
wished to highlight how the algorithmic result takes advantage of the Satisfiability
Coding Lemma, I focussed on the ideas in the analysis, and wasn’t specific about
the actual algorithm used. In fact, the algorithm designed by Paturi, Pudlak and
Zane is a very natural and simple DLL algorithm. The algorithm repeatedly does
the following: set the variables in φ in a random order to random values, except
when there is a unit clause and the current variable is forced. It is no coincidence
that this algorithm is similar to the encoding process used to prove Lemma 4!

Lemma 4 implies that there are at most 2n−n/k isolated solutions to a k-CNF,
and this can be used to give depth-3 circuit size lower bounds for Parity, where
the circuits have bottom fan-in bounded by k. The argument is very simple: a
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depth-3 circuit with bottom fan-in bounded by k is an OR of k-CNFs (the circuit
can be assumed to have top gate OR without loss of generality). Since Parity has
2n−1 isolated solutions but each k-CNF can only have 2n−n/k isolated solutions, the
circuit needs to have at least 2n/k−1 gates. This bound is tight up to a constant
factor. By a slightly more involved argument, Paturi, Pudlak and Zane show the
following for general depth-3 circuits computing Parity.

Theorem 6. [30] The depth-3 circuit size of Parity is θ(n1/42
√

n).

The upper bound in Theorem 6 is given by a very natural divide-and-conquer
strategy: break the variables up into blocks of size

√
n − log(n)/4, compute the

parity within each block, and then compute the parity of the resulting values.
Paturi, Pudlak, Saks and Zane [29] showed an improvement to Theorem 5

by using Resolution in a pre-processing step before applying the Paturi-Pudlak-
Zane algorithm. Essentially, they try to increase the number of critical clauses in a
formula. Note that if some variable in an isolated solution occurs in more than one
critical clause, then in a random permutation of variables, the probability that it
occurs last in some critical clause is larger than 1/k, and so better compression of
isolated solutions can be achieved than in Lemma 4. They prove that the repeated
use of Resolution to derive all possible clauses of some bounded width (where the
bound is o(log(n))) from the original formula actually does yield benefits.

Theorem 7. [29] For each k > 3, there is a constant µk > 1 such that k-SAT has
probabilistic savings µkn/(k − 1).

As with the Paturi-Pudlak-Zane result, the proof of this theorem gives a struc-
tural characterization of k-CNFs in terms of the maximum possible number of
sufficiently isolated solutions. Here a sufficiently isolated solution is one such
that there is no other solution within a given distance of it. This characterization
was used to give the first depth-3 circuit size lower bound of the form 2c

√
n for an

explicit function, where c > 1.

Theorem 8. [29] There is an explicit Boolean function f in P such that f does
not have depth-3 circuits of size 2π

√
n/
√

6−
√

n/ log(log(n)).

A further example of a structural property of CNFs which is relevant both to
algorithmic questions and to lower bounds is the Sparsification Lemma of Im-
pagliazzo, Paturi and Zane [22] which says that every k-CNF can be written as
the disjunction of 2εn linear-sized k-CNFs, for arbitrarily small ε > 0. I do not
discuss this further here because the Sparsification Lemma does not directly give
an improved algorithm for a natural variant of SAT. However, it has been quite
influential in the structural theory of SAT, specifically with regard to the robust-
ness of the Exponential Time Hypothesis (ETH), which states that 3-SAT is not
solvable in time 2o(n). It is also useful in proving certain kinds of depth-3 circuit
lower bounds.
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4 From Algorithms for Circuit-SAT to Circuit Lower
Bounds

In the previous section, I described an informal connection between SAT algo-
rithms and lower bounds - the Satisfiability Coding Lemma can be used both to
analyze a natural algorithm for k-SAT and to prove tight lower bounds on the size
of depth-3 circuits solving Parity. In this section, the spotlight is on the recent
breakthroughs of Ryan Williams [37, 38]. Williams made two major contribu-
tions. First, he proved that non-trivial algorithms for C-SAT imply that NEXP * C
for a wide range of natural circuit classes C. This makes the connection between
algorithms and circuit lower bounds formal, and also generic, in the sense that it
opens up the possibility of using the algorithmic approach to prove a variety of
new circuit lower bounds. Second, he gave a “proof-of-concept” for this novel ap-
proach by using it to show that NEXP * ACC0, a brand-new circuit lower bound.
This involved designing and analyzing a non-trivial algorithm for ACC0-SAT.

To give intuition for the formal connection from SAT algorithms to circuit
lower bounds, I first describe a simpler version of the result, which has an easy
proof. Williams’ connection is best understood as a refinement of this simpler
result.

Suppose we have a polynomial-time algorithm for SAT. Then it is easy to see
that EXP does not have polynomial-size circuits. If EXP ⊆ SIZE(poly), then by
the classical Karp-Lipton-Meyer theorem [25] relating non-uniform inclusions of
EXP to uniform collapses, EXP ⊆ Σ

p
2 . Now, by our assumption that SAT is in

P, we have that NP = P, and hence that Σ
p
2 = P. But these collapses together

imply that EXP = P, which is a contradiction to the deterministic time hierarchy
theorem [18, 19]. Hence the assumption that EXP ⊆ SIZE(poly) must be false.

This is an example of an indirect diagonalization argument. An implication
is proved by showing that its negation implies a contradiction to a hierarchy the-
orem. Such arguments have proven very useful in various contexts in structural
complexity theory, including uniform lower bounds for the permanent [2], time-
space tradeoffs [13, 12], a Karp-Lipton style result for NEXP [20] and separations
against advice [6].

How far can this argument be stretched? If we try and use it to show that EXP
does not have subexpontial-size circuits, we run into the issue that subexponential
functions are not closed under composition. Indeed, if SAT is in SUBEXP, we
have that NP ⊆ SUBEXP, but this does not imply that Σ

p
2 ⊆ SUBEXP. The best

we can say is that ΣP
2 ⊆ NSUBEXP, by replacing the inner co-nondeterministic

polynomial-time part of a Σ
p
2 computation with a deterministic subexponential-

time computation. But this is not enough to derive a contradiction to a hierarchy
theorem, as all we get using the additional assumption that EXP ⊆ SIZE(poly) is
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that EXP ⊆ NSUBEXP.
Perhaps we can salvage a superpolynomial size circuit lower bound for NEXP

instead? Indeed this is the case. As hinted before, the analogue of the Karp-
Lipton-Meyer theorem for NEXP is known - it was proved by Impagliazzo, Ka-
banets and Wigderson [20]. Their argument is a clever indirect one using pseudo-
randomness in a critical way (though the statement of the result itself does not
mention randomness!). At this point, we just need the result, not the proof tech-
nique. However, as we shall see, the Impagliazzo-Kabanets-Wigderson proof
technique plays an important role in the derivation of Williams’ connection.

Let us now re-do the old argument to establish a circuit lower bound from the
weaker assumption that there is an algorithm for SAT running in time 2no(1)

. The
circuit lower bound we get from this assumption is that NEXP * SIZE(poly).
Assume, to the contrary, that NEXP ⊆ SIZE(poly). Then, by the Impagliazzo-
Kabanets-Wigderson result, we have that NEXP = Σ

p
2 . Now, SAT in time 2no(1)

implies that NP ⊆ SUBEXP, and therefore that Σ
p
2 ⊆ NSUBEXP. Combining

this with the collapse for NEXP, we have that NEXP ⊆ NSUBEXP, which is a
contradiction to the non-deterministic time hierarchy theorem [10, 35, 41, 14].

The implication we have just proved is folklore. It wasn’t given much sig-
nificance because it does not represent a viable route to proving circuit lower
bounds - few believe that SAT can be solved in sub-exponential time. Indeed, the
Exponential-Time Hypothesis of Impagliazzo, Paturi and Zane [22] stating that
3-SAT cannot be solved in time 2o(n) is widely believed.

On the surface, it doesn’t look like there is much hope for getting an impli-
cation for circuit lower bounds from a much weaker algorithmic assumption for
SAT, such as solvability in time 2n/2. Such a simulation seems “fragile” in that it
doesn’t compose with polynomial-time reductions to give a non-trivial simulation
for all of NP, so it seems unlikely that the method of indirect diagonalization can
be used.

However, it turns out that is is still possible to use the method, and a key factor
in getting things to work is the parametric view of SAT, i.e., making a distinction
between the size of the instance and the number of variables. Williams [37] proved
the following theorem.

Theorem 9. [37] If there is a non-trivial algorithm for Circuit-SAT, then NEXP *
SIZE(poly).

It is somewhat surprising that such a weak algorithmic assumption already
yields lower bounds, and just the implication is interesting in itself. But what
makes it more interesting is the possibility of actually proving circuit lower bounds
this way. As per the current state of knowledge, there is no indication that Circuit-
SAT is unlikely to have a non-trivial algorithm. After all, we are only asking
to save over brute-force search by a superpolynomial factor in the running time.
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Indeed, as it later turned out, a more general version of Theorem 9 yielded new
lower bounds against ACC0.

The proof of Theorem 9 combines several known facts and ideas in a clever
way, including the completeness of the Succinct-3SAT problem for NEXP, local
checkability and the easy witness method [20].

The high-level idea is still to use indirect diagonalization. Consider an arbi-
trary language L ∈ NTIME(2n), and assume that NEXP ⊆ SIZE(poly). We use the
presumed non-trivial algorithm for Circuit-SAT to solve L non-deterministically
in time 2n/ω(1). This contradicts the non-deterministic time hierarchy theorem,
which has as a consequence the existence of a language L in NTIME(2n) but not
in NTIME(2n/ω(1)).

Let x be an instance for the language L such that |x| = n. We first use the
NEXP-completeness of the Succinct-3SAT problem to reduce x in polynomial
time to a circuit C of size poly(n) with n + O(log(n)) input bits. C implicitly
encodes a 3CNF formula φC of size 2npoly(n) such that φC is satisfiable iff x ∈
L. By an implicit encoding here, we mean that given an index i into the binary
representation of the formula φC, C outputs the i’th bit of the representation of φC.

We can’t apply the presumed Circuit-SAT algorithm directly to φC since it is
too large. Instead, we will work with the implicit encoding. The easy witness
method [20] shows that if NEXP ⊆ SIZE(poly), then every positive Succinct-
SAT instance has a succinct witness, meaning that there is a circuit C′ of size
poly(n) and with n + O(log(n)) inputs such that C′ is the implicit encoding of a
satisfying assignment to the formula encoded by the instance. Applying this to our
context, we have that there is a circuit C′ of size poly(n) which implicitly encodes
a satisfying assignment to φC.

Now we can apply the guess-and-check paradigm: guess a circuit C′ and check
that the assignment encoded by C′ indeed satisfies φC. The check that the assign-
ment satisfies the formula can be done naturally in co-non-deterministic polyno-
mial time: Universally guess a clause of φC and check using three calls to the
circuit C′ (each call recovering one bit of the succinct witness) that the clause is
indeed satisfied by the assignment encoded by C′. The key point here is that this
is a co-non-deterministic computation with only n + O(log(n)) guess bits, since
that many guess bits suffice to identify a clause of φC.

At this point, we use our algorithmic assumption and replace the co-non-
deterministic computation by a deterministic one. Using the non-trivial algorithm
for Circuit-SAT, we can implement the co-non-deterministic computation in time
2n/ω(1), since the co-non-deterministic computation is equivalent to solving a
Circuit-SAT instance of size poly(n) with parameter n + O(log(n)). By putting to-
gether the guess of the circuit C′ with this computation, we get a non-deterministic
algorithm which decides correctly whether x ∈ L in time 2n/ω(1) as desired, yield-
ing a contradiction to the non-deterministic hierarchy theorem.
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Hopefully, this description clarifies how this argument is a much more refined
version of the arguments giving the simpler implications. The Karp-Lipton-Meyer
collapse appears here implicitly in our use of local checkability, and we use a
much tighter version of the non-deterministic time hierarchy than is required for
the simpler implications. The explicit use of the easy witness method is a new
ingredient, though it appeared indirectly in our earlier argument since it underlies
the Karp-Lipton-Meyer style collapse for NEXP [20].

Though Theorem 9 is interesting, it hasn’t yielded any lower bounds yet as we
do not know any non-trivial algorithms for Circuit-SAT. In the follow-up paper
[38] which showed NEXP * ACC0, Williams significantly generalized Theorem
9 to apply to any circuit class satisfying some natural conditions.

Theorem 10. [38] Let C be any circuit class which is closed under composition,
contains AC0 and is contained in the class of general Boolean circuits. If C-SAT
has a non-trivial algorithm, then NEXP does not have polynomial-size circuits
from C.

Examples of classes C to which Theorem 10 applies include AC0, ACC0 and
NC1. Thus it gives a generic approach towards proving circuit lower bounds of
interest.

Why doesn’t the proof technique of Theorem 9 suffice to establish Theorem
10? The reason is that the reduction from x ∈ L to a circuit C doesn’t yield cir-
cuits that are structured enough. It is unclear whether the variant of Succinct-SAT
where the circuits encoding the exponential-length formula are constant-depth cir-
cuits is still NEXP-complete. Williams gets around this by using the assumptions
that C-SAT has a non-trivial algorithm and that NEXP has polynomial-size cir-
cuits from C a second time in a clever way.

More specifically, assume for the purpose of contradiction that NEXP has
polynomial-size circuits from C, and that C-SAT has a non-trivial algorithm.
Since C is a sub-class of Boolean circuits, we have that NEXP ⊆ SIZE(poly).
As before, we consider an arbitrary language L ∈ NTIME(2n) and reduce a given
instance x of L to a circuit C encoding an exponential-length CNF such that the
CNF is satisfiable iff x ∈ L. The circuit C is not in general an ACC0 circuit,
and this is where the new idea comes in: we guess an equivalent polynomial-size
ACC0 circuit D and check during the co-non-deterministic computation that D is
in fact equivalent to C by using local checkability together with the non-trivial
algorithm for ACC0-SAT. We also guess a polynomial-size ACC0 circuit D′ repre-
senting an “easy witness”. The point is that since by assumption NEXP ⊆ ACC0,
we also have that P ⊆ ACC0 and this implies that the circuits C and C′ in the old
proof have equivalent ACC0 circuits D and D′. In the case of D, we actually need
to check that it is equivalent to C, but as mentioned, this can be done using the
algorithmic assumption. The rest of the argument is the same as before - once
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we have D and D′ which are ACC0 circuits, the co-non-deterministic computation
checking if the easy witness satisfies the formula encoded by D can be simulated
deterministically in time 2n/ω(1) using the assumption of a non-trivial algorithm
for ACC0-SAT. Note that D and D′ are guessed together, and the check of whether
D is equivalent to C is performed before the check of whether the assignment
encoded by D′ satisfies the 3CNF encoded by D. What we get in the end is a
non-deterministic algorithm for deciding x which runs in time 2n/ω(1), yielding a
contradiction to the non-deterministic time hierarchy as before.

While Theorem 10, it could have been the case that for some fundamental
reason, this approach to new lower bounds was not viable. Williams’ greatest
contribution was to give a “proof of concept” by using his approach to show that
NEXP * ACC0. The biggest circuit class for which super-polynomial size lower
bounds were known for NEXP previously was AC0[p] - the class of constant-
depth circuits with modular counting gates where the modulus is a prime. In fact,
the lower bounds against AC0[p] are for explicit Boolean functions in P [32, 36],
however the full power of NEXP seems necessary to achieve Williams’ lower
bound.

Williams’ algorithm for ACC0-SAT is innovative even from the algorithmic
viewpoint, as it uses algorithmic ideas which hadn’t been explored before in the
context of algorithms for SAT. The first algorithm he came up with was a rather
involved one using a result of Coppersmith about matrix multiplication. Following
on a suggestion of Bjorklund, he later came up with a much simpler algorithm
which uses dynamic programming, and this is the one I discuss. The algorithm
relies on a well-known structural property of polynomial-size ACC0 circuits [40,
9, 2] - the fact that they can be simulated by quasi-polynomial-size depth-2 SYM+

circuits. A SYM+ circuit is a circuit where the bottom layer is composed only of
ANDs of small fan-in and the top gate is a symmetric gate. An additional property
that is required is that these depth-2 SYM+ circuits can be constructed efficiently
from the original ACC0 circuits, and the top symmetric gate can be efficiently
evaluated.

The algorithm is not non-trivial in the sense we defined before, but using the
proof of Theorem 10, it does imply that NEXP ⊆ ACC0 since it runs in time
2n−ω(log(n)) on circuits of size poly(n).

Theorem 11. [38] There is an algorithm for p-ACC0-SAT running in time O(2n−nΩ(1)
)

when m = poly(n).

I now sketch the proof. Let C be an ACC0 circuit of size m 6 nc with n
inputs, where c is a constant. Let l < n be a parameter which will be fixed later.
First, convert C to an equivalent circuit C′ of size m2l on t = n − l variables by
enumerating all possible assignments on the first l variables and taking a big OR
of the resulting 2l copies of C. Note that C′ is still an ACC0 circuit. Let s = m2l.
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Next, convert C′ to an equivalent depth-2 circuit C′′ of size s′ = slogk(s), where k
is a constant. This can be done in time O(slogO(1)(s)) using a result of Allender and
Gore [2].

The key lemma is that a SYM+ circuit of size s′ on t variables can be evaluated
on all possible truth assignments to the variables in time O((s′ + 2t)poly(t)). Note
that this is superior to brute-force search in that the circuit size and the 2t term are
related additively rather than multiplicatively. This gives a significant advantage
when the circuit size s′ is large, as it is in our case.

Given the key lemma, we are done by choosing l = nε for ε sufficiently small.
This is because, by the lemma, the SYM+ circuit can be evaluated on all possible
truth assignments in time O((2nε+kε+o(1)

+ 2n−nε )poly(n)), which is O(2n−nε ) when
ε = 1/(k + 2).

To prove the key lemma, we use dynamic programming. Essentially, we need
to keep track of which AND gates evaluate to 1, in order to evaluate the symmetric
function. We initialize a look-up table which states for every subset S of the input
variables, the number f (S ) of AND gates which have precisely this subset as
input. This initialization can be done in time O((s′+ 2t)poly(t)). We then compute
the zeta transform g of f using a standard dynamic programming algorithm, where
for any subset T , g(T ) is the sum over all subsets S ⊆ T of f (T ). For each
T , g(T ) is the number of AND gates evaluating to 1 on the input which is 1 for
precisely those input bits in T . This gives all the information required to evaluate
the symmetric gate on that input. Thus we simultaneously obtain the answers of
the circuit for all candidate assignments in time O((s′ + 2t)poly(t)), proving the
key lemma.

The Williams results raise the intriguing question of whether there are inherent
barriers to proving lower bounds in this fashion. Progress on lower bounds using
more traditional techniques has been halted by several barriers, including the rel-
ativization barrier [7], the natural proofs barrier [33] and the algebrization barrier
[4]. None of these barriers seem to apply directly to the approach via algorithms.
This is not necessarily cause for hope, but it is cause not to be pessimistic!

Of course, the viability of the approach depends on the existence of non-trivial
algorithms (or algorithms at least good enough to be able to apply Theorem 10 for
C-SAT, where C is a broader class of circuits than ACC0. The jury is still out on
this, but there’s certainly a strong motivation now to develop the structural theory
of the exact complexity of SAT variants, with the goal of understanding in which
situations non-trivial algorithms are likely to exist.
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5 Improved SAT Algorithms using Lower Bound
Techniques

The results of Williams discussed in the previous section take advantage of a for-
mal connection from algorithms to lower bounds. It is natural to ask whether there
is a connection in the reverse direction - can lower bound techniques be used to
design and analyze SAT algorithms?

In Section 4, I described structural properties of CNFs which were useful both
in designing algorithms and proving lower bounds. The results in this section will
have a slightly different flavour. Standard lower bound techniques will be used as
inspiration to design SAT algorithms improving on brute-force search. No formal
connection will be established, but using lower bounds as inspiration will have
significant payoffs nevertheless.

While k-SAT and CNF-SAT have been widely studied, and improvements over
brute-force search are known, until recently nothing non-trivial was known for
Formula-SAT, where there is no restriction on the depth of the input formula. A
year and a half ago, Santhanam [34] gave a simple deterministic algorithm which
achieved savings Ω(n3/m2) for Boolean formulae over the de Morgan basis. Note
that the savings is Ω(n) for linear-size formulae. Santhanam also gave a different
algorithm which achieved savings Ω(n2/(m log(n))) on formulae over an arbitrary
basis.

Theorem 12. [34] Formula-SAT has savings Ω(n3/m2).

The same savings applies to the problem of counting the number of satisfying
assignments of a Boolean formula, using the same analysis.

The proof technique of Theorem 12 also yields a new lower bound conse-
quence.

Corollary 13. [34] Any linear-size sequence of formulae fails to compute Parity
correctly on at least a 1/2−1/2Ω(n) fraction of inputs of length n, for all but finitely
many n.

The algorithm underlying the proof of Theorem 12 is very simple indeed. It
is a DLL algorithm where the variable to be set is chosen as the most frequently
occurring variable in the current formula, and the value to which it is set is cho-
sen arbitrarily. This is a purely deterministic algorithm, however the analysis is
probabilistic and uses the popular random restriction lower bound method as in-
spiration.

The random restriction method has been used to prove lower bounds in various
settings, including for constant-depth circuits and Boolean formulae [3, 15, 16, 5,
17]. The basic idea is as follows. Suppose we are trying to prove a lower bound
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against a class C of circuits. We look at what happens when a circuit from the
class is “hit” with a random restriction, meaning that some of the variables are
set in a specific way. For the present, we deal with pure random restrictions.
A pure random restriction with parameter p is a probability distribution on partial
assignments to inputs which sets each variable independently to 1 with probability
(1 − p)/2, to 0 with probability (1 − p)/2 and leaves it unset with probability p.
We try to argue that when a pure random restriction is applied to the inputs of a
circuit from C, the circuit “simplifies” drastically. For constant-depth circuits, this
is done using the Switching Lemma [16], which says that the induced function
is constant with high probability, where the meaning of “high” depends on the
choice of p. For Boolean formulae over the de Morgan basis, this is done by
analyze the shrinkage exponent, which is the largest constant γ so that a formula
of size L shrinks to a formula of size O(pγL) under a restriction with parameter
p. Subbotovskaya [5] proved that the shrinkage exponent is at least 1.5, and there
was a sequence of papers obtaining improvements until Hastad proved that the
shrinkage exponent is exactly 2 [17]. Indeed, the current best formula size lower
bound of n3−O(1) for an explicit function is based on Hastad’s result.

How do random restrictions connect to DLL algorithms? There is a superfi-
cial similarity in that processes involve variables being set incrementally, but in
fact the connection goes deeper. In both processes, the notion of “simplification”
is important. A DLL algorithm stops when the formula simplifies to “true” and
backtracks when it simplifies to “false”. The hope is that not too much backtrack-
ing is required before finding a satisfying assignment, if one exists. In the case
of random restrictions, simplification of the formula is key to the technique being
usable to prove lower bounds. The more drastic the simplification, the more lim-
ited the circuit class is, in some sense, and hence the better the lower bounds that
can be shown. Quick simplification is also useful for DLL algorithms, as it means
less backtracking and hence better savings over brute-force search.

This intuition can be made precise in the analysis of the DLL algorithm de-
scribed above for FormulaSAT. We analyze a slightly different kind of random
restriction - an adaptive restriction. In a pure restriction, the choice of which
variables to set is made uniformly at random, and so too which values to set vari-
ables to. In an adaptive restriction, while the choice of values remains uniform,
the choice of which variables to set is done adaptively depending on which vari-
ables are already set and how this setting has simplified the formula. It makes
sense to study adaptive restrictions where the variables are set in the same order
as they are set in the algorithm for FormulaSAT, as this gives a natural corre-
spondence between properties of the restriction and efficiency of the algorithm.
Subbotovskaya’s analysis of pure random restrictions can be refined to show a
concentration bound for simplification of formulae under such adaptive restric-
tions, and this concentration bound can then be used to bound the running time of
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the DLL algorithm. Details can be found in the paper [34].
As with the results in Section 4, the analytical technique exposes a structural

property of small formulae - they have decision trees that are not too large. This
property can be exploited to prove Corollary 13, as it is easy to see that Parity
requires decision trees of size 2n. Indeed, any leaf of a decision tree that is not
at depth n is uncorrelated with Parity, which is why this argument gives a strong
correlation lower bound.

The random restriction method and the DLL algorithmic paradigm have both
been the subject of much interest, so it is natural to wonder whether the connec-
tion between them can be exploited further. Santhanam conjectured that an anal-
ogous argument to his could yield an improved algorithm for AC0-SAT, as well
as new correlation bounds against AC0 circuits. There has been a spate of recent
work on this. Beame, Impagliazzo and Srinivasan (manuscript) have consider-
ably improved an old correlation bound of Ajtai [3], and designed the current best
deterministic algorithm for AC0-SAT. Independently, Impagliazzo, Matthews and
Paturi [21] came up with a probabilistic DLL algorithm for AC0-SAT achieving
savings close to linear.

Theorem 14. [21] AC0-SAT has probabilistic savings Ω(n/(log(m/n))d−1).

The analysis of the Impagliazzo-Matthews-Paturi algorithm extends and re-
fines the Hastad switching lemma, and gives a new structural characterization of
AC0 functions in terms of partitions of the Hamming cube into subcubes where
the function is constant. An optimal correlation bound for Parity against constant-
depth circuits follows from this characterization, in a similar way to how Corollary
13 follows from Theorem 12.

Corollary 15. [21] AC0 circuits of size s fail to compute Parity correctly on at
least a 1/2 − 1/2Ω(n/(log(m/n))d−1) fraction of inputs, for n large enough.

A similar correlation bound was obtained independently by Hastad (manu-
script). The above results exploit a connection between DLL algorithms and ran-
dom restrictions. Are there other lower bound techniques that can be harnessed
algorithmically? This is an intriguing question about which little is known. San-
thanam’s algorithm for formulae over an arbitrary basis can be interpreted as uti-
lizing a connection between the algorithmic paradigm of memoization and the
Neciporuk lower bound technique in complexity theory, but I do not know of any
other results along this direction.

6 Speculation
The recent papers on SAT algorithms and lower bounds have opened up what
promises to be a very fruitful area of research. There are many research directions
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that look interesting, and in this section I will give a personal selection.

Perhaps the most exciting questions arise from the work of Williams. His
lower bound against ACC0 circuits is for a Boolean function in NEXP. The lower
bounds we know against weaker classes are all for functions in P. This is a ma-
jor discrepancy - can we prove a similar lower bound for a much more explicit
function? It seems that techniques somewhat different from Williams’ will be re-
quired. Perhaps the limitations of the circuit class ACC0 which are exposed by
his algorithm for ACC0-SAT could be exploited in a more direct fashion, giving a
more explicit bound.

Another very natural question is to derive lower bounds against larger classes
of circuits. This motivates the exploration of new algorithmic paradigms for SAT,
such as dynamic programming and graph sparsification.

In terms of the reverse connection from lower bounds to algorithms, it would
be interesting to identify if there is any “algorithmic content” in other common
lower bound techniques such as the polynomial method and the Khrapchenko
method. New analyses for DLL algorithms have been found by constructivizing
the proofs that random restrictions simplify formulae, and perhaps other lower
bound proofs could be constructivized in a similar way. In an optimistic scenario,
this would lead to new algorithmic methods that could be used elsewhere.

In the Boolean complexity world, the connections between algorithms and
lower bounds have only been studied so far in the context of the Satisfiability
problem. There are various other NP-hard problems, such as Clique, Colouring,
Subset Sum etc. for which improved algorithms beating brute-force search are
an active topic of study. Could any of the lower bound connections help in ana-
lyzing these problems? An immediate obstacle to doing this is that none of these
problems are inherently meta-algorithmic, unlike SAT. But maybe the use of al-
ternative notions of complexity, such as graph complexity, could provide some
insight here.

Connections analogous to those in the Boolean complexity setting could exist
in the arithmetic complexity setting as well. Specifically, it is quite conceivable
that algorithms for the Polynomial Identity Testing problem marginally beating
brute force search could lead to new arithmetic complexity lower bounds, and this
possibility ought to be explored further.

To reiterate, the complicity between lower bounds and algorithms could pro-
vide a way around the obstacles to which complexity theorist, and to a lesser extent
algorithmists, are so accustomed. But the maps we can draw at this stage are of
necessity rough, unformed. All we can do is to believe that the deep mysteries
mask a deeper sense.
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