
The Education Column
by

Juraj Hromkovič and Dennis Komm

ETH Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch and dennis.komm@inf.ethz.ch

https://inf.ethz.ch
juraj.hromkovic@inf.ethz.ch
dennis.komm@inf.ethz.ch

Teaching Formal Foundations of Computer
Science with Iltis

Marko Schmellenkamp
Ruhr University Bochum

marko.schmellenkamp@rub.de

Fabian Vehlken
Ruhr University Bochum
fabian.vehlken@rub.de

Thomas Zeume
Ruhr University Bochum
thomas.zeume@rub.de

Abstract

Introductory courses on formal foundations of computer science are often
attended by large numbers of students with diverse backgrounds. In this paper
we outline how we address this challenge in our courses by supplementing
traditional teaching with web-based, interactive exercises. The web-based
exercises are provided by Iltis, a modern teaching support system covering
the foundations of computer science logic, formal languages, and (parts
of) complexity theory. We give a gentle introduction to Iltis, describe its
technical integration into our courses, and outline research challenges and
opportunities coming up when developing such a system.

1 Introduction and Motivation
Formal foundations are at the core of many modern applications of computer sci-
ence and are therefore an integral part in recommendations for Bachelor computer
science curricula [8, 6]. Typical study programs implement these recommendations
by offering, among others, courses on Logics for Computer Scientists — covering
the reasoning pipeline for propositional logic and first-order logic — and on Theo-
retical Foundations of Computer Science — covering formal languages as well as
basics of complexity and computability theory; see Figure 1(a) for an overview of
standard topics.

Teaching these formal foundations is a challenge for most instructors as it
is one of the harder topics for students. Also, increasing numbers of students
enrolled in computer science courses with diverse backgrounds are difficult to

marko.schmellenkamp@rub.de
fabian.vehlken@rub.de
thomas.zeume@rub.de

Foundations of logic

• Basics: Propositional, modal, and
first-order logic

• Advanced: Logics for verification,
description logics, etc.

• Methods: Modelling, reasoning
pipeline (modelling, transforma-
tion, inference), algorithms for eval-
uation & satisfiability

Foundations of formal languages

• Basics: Regular and context-free
languages

• Advanced: Regular tree languages,
timed languages etc.

• Methods: Modelling, closure prop-
erties, constructions & algorithms,
pumping lemmata

Basics of complexity theory

• Basics: P, NP, completeness

• Advanced: Space-based classes,
fine-grained complexity, etc.

• Methods: Classifications, closure
properties, reductions, . . .

Basics of computability theory

• Basics: (Semi-)decidability, unde-
cidability, computability

• Methods: Classifications, closure
properties, reductions, . . .

(a) (b)

Exercise: From modelling to inference

Julia has identified the following dependen-
cies between program libraries and system li-
braries:

• No software package is both a program li-
brary and a system library.

• System libraries depend only on system li-
braries.

• Every software package that must be explic-
itly installed by the user depends on at least
one program library directly.

She concludes that there is no system library
that must be explicitly installed by the user.

Can you confirm her conclusion using meth-
ods you learned for first-order logic?

Figure 1: (a) Topics typically covered by courses on formal foundations of computer science. (b)
A typical exercise for a workflow covering modelling, transformation, and inference in first-order
logic.

handle with traditional lecture- and tutorial-based courses. In particular, providing
individual human tutoring for such a large number of students with diverse needs
exceeds the resources of most CS departments. A general approach for tackling this
challenge and increasing learning outcomes across STEM disciplines is provided
by the National Research Council of the US which advocates, among others, to
“Leverage technologies to make the most effective use of students’ time, shifting
from information delivery to sense-making and practice in class” [9, 2]. For formal
foundations, technological teaching support in particular may help to make room
for theory and in-depth problem solving in lectures and tutorials by outsourcing
some basics.

From our perspective, to be useful in large, mandatory courses, teaching support
technologies for formal foundations of computer science need to offer:

• Coverage of a wide range of topics in formal foundations of computer
science;

• Advanced feedback and support provided immediately, extensively, and
individually;

• Flexibility in how to use and combine educational tasks;

• Easy integration into courses; and

• Extensibility of topical range and feedback mechanisms.

Many teaching support systems for topics typically taught in introductory
formal foundations courses have been developed over the years. Most of these

systems were developed ad-hoc by instructors for helping their students. A common
theme is that only a small set of topics (typically only one) is covered; systems are
abandoned and/or become technologically outdated rather quickly; and in most of
them only very basic feedback is provided.

In this article we report on our experiences and progress in building the teaching
support system Iltis.1 In short, Iltis offers a wide range of interactive, web-based
exercises on formal foundations of computer science. It is designed for flexibility
and extensibility, and offers easy integration into common learning management
systems. Within this article we address

• the scope of Iltis – which topics are covered and how content can be com-
posed for different needs (see Section 2);

• how we set up large introductory courses on Logic for Computer Science and
on Foundations of Theoretical Computer Science with integrated web-based
exercises in Iltis (see Section 3);

• what research challenges and opportunities arise – theoretical, practical, and
didactical – when building teaching support systems for formal foundations
of computer science (see Section 4).

This article updates, adapts, and condenses a report from 2021 by a superset of
the current authors [5].

2 An Introduction to Iltis
In Iltis, instructors can design educational content flexibly by using a broad
portfolio of educational tasks in foundations of logic, formal languages, and
complexity theory (see Section 2.3). A compositional task model allows to combine
tasks flexibly into multi-step exercises (see Section 2.1). A compositional feedback
model allows for providing feedback according to the progress of students in
curricula (see Section 2.2).

2.1 Compositional Task Model
Exercises in Iltis are built from small, easily composable, educational tasks. Each
educational task is configurable by inputs — either given explicitly or as the output
of prior tasks — and provides objects created by students within this task as outputs.
The outputs can then be used by subsequent educational tasks. For instance, a

1Iltis [’IltIs] is the German word for polecat and the Swiss animal of the year 2024 [1]. We
invite all readers to try out Iltis: https://iltis.cs.tu-dortmund.de/

https://iltis.cs.tu-dortmund.de/

Table 1: A summary of educational tasks in the logic domain that are supported by Iltis.
Task Propositional logic Modal logic First-order logic

Evaluating formulas ✓ ✓ –

Constructing models ✓ ✓ ✓

Creating signatures ✓ ✓ (✓)

Constructing formulas ✓ ✓ ✓

Transforming ✓ ✓ ✓

Testing satisfiability ✓ ✓ ✓

Task variants
& further tasks

Satisfiability tests with
• truth tables
• HornSat algorithm
• tableau calculus
• resolution

Satisfiability test with
tableau calculus

Calculating bisimulations

Proving non-bisimilarity
of worlds

Satisfiability test with
resolution

Proving non-equivalence
of formulas

Table 2: A summary of educational tasks that are supported for formal languages, computability
and complexity theory.

Regular languages Context-free languages Computability & complexity the-
ory

Modeling with
• deterministic automata
• non-deterministic automata
• regular expressions

Specifying words
Specifying Myhill-Nerode-classes
Proving non-equivalence of languages

Modeling with
• push-down automata
• deterministic push-down automata
• context-free grammars (CFGs)

Specifying words
Specifying derivations in CFGs
Proving non-equivalence of languages

Interacting with graphs:
• constructing graphs
• colouring nodes and edges

satisfying multiple conditions

Specifying graph reductions

task for transforming a formula into conjunctive normal form (CNF) receives a
formula as input and provides the student-constructed, equivalent formula in CNF
as output.

Typical workflows used in formal foundations of computer science can be
covered by multi-step exercises composed of different educational tasks. For
instance, Figure 2 illustrates a workflow in which students first model a scenario
with propositional formulas φ1 and φ2, and then infer another propositional formula
ψ by first deciding what to do, then transforming φ1∧φ2∧¬ψ into CNF, and finally
showing unsatisfiability of the set of clauses via the satisfiability algorithm for Horn
formulas (instead of the latter, also propositional resolution or the propositional
tableau calculus could be used). Throughout this workflow, the formulas entered
by the students are used for subsequent tasks.

Two further multi-step exercises are illustrated in Figures 2, 3 and 5.

Input: –

Assignment
Output: –

Input: –

Step 1: Constructing formulas
Model the scenario

Output: Formulas ψ1, . . . , ψm

Input: –

Step 2: Constructing formulas
Model the consequence

Output: Formula ψ

Input: –

Step 3: Multiple choice
What to do now?

Output: –

Input: ψ1 ∧ . . . ∧ ψm ∧ ¬ψ

Step 4: Transforming formulas
Transform into implication form

Output: Formula φ in implication form

Input: Formula φ in implication form

Step 5: HornSat algorithm
Apply algorithm

Output: –

Input: –

Step 6: Multiple choice
Determine unsatisfiability

Output: –

Debugging a chat system:
Archie sends some test messages to his three co-
developers Sophie, Luke, and Maja. He makes the
following observations: [. . .] Archie assumes that
Maja was able to receive his message, but is he right?
Verify Archie’s assumption!

Imprint Privacy Policy

 2022-01-22 01:53 +0100

 2022-01-27 14:58:47 +0100

Iltis: Progress report 2022

Step 1: Modeling the scenario

✓

×

For each of the statements, devise a propositional formula.

Sophie and Luke received Archie's message.

Only if Maja received Archie's message, both Sophie and Luke

did as well.

Your formula is not correct.

The implication operator is used for translating

conditional statements into propositional

formulas. For example, a statement of the form

"If φ then ψ" can be written as "φ → ψ".

Caution: Statements of the form "φ only if ψ" are

expressed by "φ → ψ" even though "if" occurs in

front of ψ.

You might have mixed up "If ... then ..." and "...

only if ...".

Check out the highlighted parts of your formula

again: M → (S∧L)

Show more...

Finish Task

S ∧ L

M → (S ∧ L)

 devs

S: Sophie received Archie's message.

L: Luke received Archie's message.

M: Maja received Archie's message.

Propositional variables

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-22 01:53 +0100

 2022-01-27 14:58:47 +0100

Iltis: Progress report 2022

Step 1: Modeling the scenario

✓

×

For each of the statements, devise a propositional formula.

Sophie and Luke received Archie's message.

Only if Maja received Archie's message, both Sophie and Luke

did as well.

Your formula is not correct.

The implication operator is used for translating

conditional statements into propositional

formulas. For example, a statement of the form

"If φ then ψ" can be written as "φ → ψ".

Caution: Statements of the form "φ only if ψ" are

expressed by "φ → ψ" even though "if" occurs in

front of ψ.

You might have mixed up "If ... then ..." and "...

only if ...".

Check out the highlighted parts of your formula

again: M → (S∧L)

Show more...

Finish Task

S ∧ L

M → (S ∧ L)

 devs

S: Sophie received Archie's message.

L: Luke received Archie's message.

M: Maja received Archie's message.

Propositional variables

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 15:05:19 +0100

Iltis: Progress report 2022

Step 5: Applying the HornSat algorithm

Apply the HornSat algorithm to the formula in implication

form constructed above.

For this, click on the variable that will be marked next by the

algorithm. Variables you select are highlighted in red. All

occurrences of these variables are automatically

highlighted in blue.

((S∧ L)→ M)∧ S∧ L∧ (M→ ⊥)

Finish task: All variables possible are marked

 devs

Back to top

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 15:05:19 +0100

Iltis: Progress report 2022

Step 5: Applying the HornSat algorithm

Apply the HornSat algorithm to the formula in implication

form constructed above.

For this, click on the variable that will be marked next by the

algorithm. Variables you select are highlighted in red. All

occurrences of these variables are automatically

highlighted in blue.

((S∧ L)→ M)∧ S∧ L∧ (M→ ⊥)

Finish task: All variables possible are marked

 devs

Back to top

Iltis: Progress report 2022

Figure 2: An exercise for the propositional reasoning workflow, composed of smaller educational
tasks. For this sample scenario, the instructor chose the HornSat satisfiability test as Horn formulas
are sufficiently expressive. For general propositional formulas, also truth tables, propositional
resolution, and the propositional tableau calculus can be used. In Step 1, the student chose to reveal
the first three feedbacks.

Input: –

Assignment
Output: –

Input: Formula φ (specified by instructor)

Step 1: Transforming formulas
Transform into NNF

Output: Formula ψ in NNF

Input: Formula ψ in NNF

Step 2: Tableau Calculus
Construct a tableau

Output: –

Input: –

Step 3: Multiple choice
Is ψ satisfiable?

Output: –

Input: Formula ψ

4b: Specify structure
Construct a model for ψ

Output: –

Input: –

4a: Multiple choice
Why is ψ unsatisfiable?

Output: –

ψ satisfiableψ unsatisfiable

Testing for satisfiability
Test whether the modal formula

φ = ¬□(¬A ∨ ¬^B) ∧ (^B ∨ ¬^A)

is satisfiable. If so, also construct a model.

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 20:02:04 +0100

Iltis: Progress report 2022

Step 1: Transformation

First transform the formula step by step into negation

normal form.

 Copy

 Check

⊤ ⊥ ∧ ∨ ¬ → ↔ () ☐ ◇

A B

Finish task: negation normal form reached

¬☐(¬A∨¬◇B)∧(◇B∨¬◇A)

◇¬(¬A∨¬◇B)∧(◇B∨¬◇A)
◇(A∧◇B)∧(◇B∨¬◇A)
◇(A∧◇B)∧(◇B∨☐¬A)

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 20:02:04 +0100

Iltis: Progress report 2022

Step 1: Transformation

First transform the formula step by step into negation

normal form.

 Copy

 Check

⊤ ⊥ ∧ ∨ ¬ → ↔ () ☐ ◇

A B

Finish task: negation normal form reached

¬☐(¬A∨¬◇B)∧(◇B∨¬◇A)

◇¬(¬A∨¬◇B)∧(◇B∨¬◇A)
◇(A∧◇B)∧(◇B∨¬◇A)
◇(A∧◇B)∧(◇B∨☐¬A)

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-22 01:53 +0100

 2022-01-19 20:02:04 +0100

Iltis: Progress report 2022

Step 2: Applying the tableau calculus

Construct a saturated modal tableau for your formula in

negation normal form. Also mark all contradictory leaves.

∧-rule ∨-rule ☐-rule ◇-rule

s ₁ , ◇ (A∧◇B)∧ (◇B∨☐¬ A)s ₁ , ◇ (A∧◇B)∧ (◇B∨☐¬ A)

s ₁ , ◇ (A∧◇B)s ₁ , ◇ (A∧◇B)

s ₁ , ◇B∨☐¬ As ₁ , ◇B∨☐¬ A

(s ₁ , s ₂) ∈ E(s ₁ , s ₂) ∈ E

s ₂ , A∧◇Bs ₂ , A∧◇B

s ₂ , As ₂ , A

s ₂ , ◇Bs ₂ , ◇B

(s ₂ , s ₃) ∈ E(s ₂ , s ₃) ∈ E

s ₃ , Bs ₃ , B

s ₁ , ◇Bs ₁ , ◇B

(s ₁ , s ₄) ∈ E(s ₁ , s ₄) ∈ E

s ₄ , Bs ₄ , B

s ₁ , ☐¬ As ₁ , ☐¬ A

s ₂ , ¬ As ₂ , ¬ A

Step 1 ∧-rule applied on (s , ◇(A∧◇B)∧(◇B∨☐¬A)).

Step 2 ◇-rule applied on (s , ◇(A∧◇B)).

Step 3 ∧-rule applied on (s , A∧◇B).

Step 4 ◇-rule applied on (s , ◇B).

Step 5 ∨-rule applied on (s , ◇B∨☐¬A).

Step 6 ☐-rule applied on (s , ☐¬A).

Step 7 ◇-rule applied on (s , ◇B).

Finish Task

Protocol

1

1

2

2

1

1

1

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-22 01:53 +0100

 2022-01-19 20:02:04 +0100

Iltis: Progress report 2022

Step 2: Applying the tableau calculus

Construct a saturated modal tableau for your formula in

negation normal form. Also mark all contradictory leaves.

∧-rule ∨-rule ☐-rule ◇-rule

s ₁ , ◇ (A∧◇B)∧ (◇B∨☐¬ A)s ₁ , ◇ (A∧◇B)∧ (◇B∨☐¬ A)

s ₁ , ◇ (A∧◇B)s ₁ , ◇ (A∧◇B)

s ₁ , ◇B∨☐¬ As ₁ , ◇B∨☐¬ A

(s ₁ , s ₂) ∈ E(s ₁ , s ₂) ∈ E

s ₂ , A∧◇Bs ₂ , A∧◇B

s ₂ , As ₂ , A

s ₂ , ◇Bs ₂ , ◇B

(s ₂ , s ₃) ∈ E(s ₂ , s ₃) ∈ E

s ₃ , Bs ₃ , B

s ₁ , ◇Bs ₁ , ◇B

(s ₁ , s ₄) ∈ E(s ₁ , s ₄) ∈ E

s ₄ , Bs ₄ , B

s ₁ , ☐¬ As ₁ , ☐¬ A

s ₂ , ¬ As ₂ , ¬ A

Step 1 ∧-rule applied on (s , ◇(A∧◇B)∧(◇B∨☐¬A)).

Step 2 ◇-rule applied on (s , ◇(A∧◇B)).

Step 3 ∧-rule applied on (s , A∧◇B).

Step 4 ◇-rule applied on (s , ◇B).

Step 5 ∨-rule applied on (s , ◇B∨☐¬A).

Step 6 ☐-rule applied on (s , ☐¬A).

Step 7 ◇-rule applied on (s , ◇B).

Finish Task

Protocol

1

1

2

2

1

1

1

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 23:35:35 +0100

Iltis: Progress report 2022

Step 4b: Model construction

Construct a model of the formula. For this, read a Kripke

structure with a world from your tableau such that

holds.

s1s1

s2s2

A

s3s3

B

s4s4

B

Finish Task

K s

1

(K, s

1

) ⊨ ¬□(¬A ∨ ¬◊B) ∧ (◊B ∨ ¬◊A)

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 23:35:35 +0100

Iltis: Progress report 2022

Step 4b: Model construction

Construct a model of the formula. For this, read a Kripke

structure with a world from your tableau such that

holds.

s1s1

s2s2

A

s3s3

B

s4s4

B

Finish Task

K s

1

(K, s

1

) ⊨ ¬□(¬A ∨ ¬◊B) ∧ (◊B ∨ ¬◊A)

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 23:35:35 +0100

Iltis: Progress report 2022

Step 4b: Model construction

Construct a model of the formula. For this, read a Kripke

structure with a world from your tableau such that

holds.

s1s1

s2s2

A

s3s3

B

s4s4

B

Finish Task

K s

1

(K, s

1

) ⊨ ¬□(¬A ∨ ¬◊B) ∧ (◊B ∨ ¬◊A)

 devs

Iltis: Progress report 2022

Imprint Privacy Policy

 2022-01-19 09:30 +0100

 2022-01-19 23:35:35 +0100

Iltis: Progress report 2022

Step 4b: Model construction

Construct a model of the formula. For this, read a Kripke

structure with a world from your tableau such that

holds.

s1s1

s2s2

A

s3s3

B

s4s4

B

Finish Task

K s

1

(K, s

1

) ⊨ ¬□(¬A ∨ ¬◊B) ∧ (◊B ∨ ¬◊A)

 devs

Iltis: Progress report 2022

Figure 3: An exercise for solving the satisfiability problem for modal formulas, composed of
smaller educational tasks. For satisfiable and unsatisfiable formulas, different workflows can be
used.

Input: –

Assignment
Output: –

Input: –

Step 1: Specifying words
Get to know the language

Output: Words w1, . . . ,wm

Input: –

Step 2: Multiple choice
Determine the level in the Chomsky hierarchy

Output: –

Input: –

Step 3: Constructing grammars
Design a grammar for the language

Output: Grammar G

Input: Word w, Grammar G

Step 4: Deriving words
Derive a word from the student’s grammar

Output: –

Modelling a language
First, decide the level of the Chomsky hierarchy of the
language

L = {w ∈ Σ∗ | #a(w) = #b(w)},

then model it in a suitable representation.

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Step 1: Finding words in L

×

✓

For each requirement, find a word over the alphabet

 that is contained in

and meets the respective requirement.

A word in that contains all symbols of .

Your input is not correct.

The following conditions are not met:

• Your word has to be contained in .

• Your word has to contain all symbols of .

A word in with a minimum length of 6 that contains no .

Finish Task

Σ = {a, b, c}

L = {w ∈ Σ∗ ∣ #a(w) = #b(w)}

L Σ

aab

L

Σ

L c

ababab

 devs

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/21/24, 13:15

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Step 3: Constructing a grammar for L

In the last step, you decided that

is a context-free language.

Now construct a context-free grammar that describes .

S → | ε ↵

a b c

A B C D E F G H S

Finish Task

L = {w ∈ Σ∗ ∣ #a(w) = #b(w)}

L

S → aSb | bSa | c

 devs

Your grammar is incorrect. Consider the following

counterexample: the word ε is contained in the given

language, but it cannot be derived from your

grammar.

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/21/24, 13:31

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Step 4: Deriving a word

Now, let's come back to the second word you specified in

the first step,

and the grammar you entered in the last step:

To prove, that can actually be derived in your grammar,

specify a derivation of in . Make one step at a time.

 Check

 Copy

Finish Task

w = ababab,

G

S → aSb ∣ bSa ∣ SS ∣ c ∣ ε

w

w G

S

⇒ aSb

⇒ abS

 devs

Your last derivation step is not possible in the given

grammar.

Back to top

Figure 4: An exercise for constructing a representation of a formal language. As preparatory
step, students explore the formal language by identifying some elements and deciding its level
in the Chomsky hierarchy. For constructing a representation of a context-free languages Iltis
supports context-free grammars and push-down automata; for regular languages, it supports (non-
)deterministic finite state automata and regular expressions.

Assignment

Get to know the algorithmic problems
via positive and negative instances

Explore a negative reduction candidate
from VertexCover to DominatingSet

Get to know the reduction candidate

Find a counterexample

Explore a positive reduction candidate
from VertexCover to DominatingSet

Get to know the reduction candidate

Transfer a vertex cover to a dominating set

Construct a reduction
from VertexCover to FeedbackVertexSet

Finding a reduction
(a) Explore a reduction from

VertexCover to Dominatingset
(b) Design a similar reduction from

VertexCover to FeedbackVertexSet

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Proving that nodes are no vertex cover

Select an edge that proves that the three red-coloured

nodes do not form a 3-vertex cover.

Finish Task

 devs

Back to top

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Specifying a counterexample

Construct a graph that contains a 1-vertex cover, but for

which is a negative D���������S��

instance, for the function above.

Finish Task

G

(G⋆, 2) = g(G, 1)

g

G:

 devs

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/23/24, 12:24

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Transferring a solution candidate

Select a 2-vertex cover in the graph . Then select the

corresponding 2-dominating set in the graph , where

 for the function above.

Finish Task

G

G⋆

(G⋆, 2) = f(G, 2) f

G:

G⋆:

 devs

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/23/24, 12:34

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Constructing a reduction

Define a reduction from

V�����C���� to F�������V�����S��.

It turns out that this reduction is very similar to the

reduction from V�����C���� to D���������S�� we

explored earlier. In particular, we can chose and

also transfer all nodes from to .

Now, specify how is constructed from by stating

which additional nodes and edges is supposed to

contain.

Finish Task

h : (G, k) ↦ (G⋆, k⋆)

k⋆ = k

G G⋆

G⋆ G

G⋆

For each (undirected) edge in , specify which nodes

and edges should contain in its place:

u v

u v

uv

{u, v} G

G⋆

↦

 devs

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/22/24, 13:03

Figure 5: A series of tasks for helping students to find a computational reduction between two
problems. As a preparatory step, students can explore (a) the involved algorithmic problems and (b)
reduction candidates similar to the reduction to be found (one incorrect and one correct candidate).
The actual workflow is only depicted partially in this illustration.

2.2 Compositional Feedback Model
One of the core objectives of Iltis is to provide immediate and comprehensive feed-
back, as this is one of the most important factors for learning success. Educational
task types in Iltis come with multiple feedback generators, each one responsible
for one kind of feedback. Individual feedback generators can be composed to
feedback strategies by simple rule-based programs. Such programs are executed
upon student input and determine the order of feedback, with the execution of rules
possibly depending on the result of previous rules.

When specifying interactive exercises, instructors can state which feedback
strategy to use (or they can define a custom one). In this way, the progress of
students can be taken into account, e.g., a strategy that provides a lot of feedback
can be used for beginners, while a strategy that provides almost no feedback can
be used for exam preparation. By gradually uncovering the feedback from the
different generators, students can choose how much of the feedback provided they
want to use.

Designing feedback strategies and generators is a subtle and challenging task
as algorithmic feasibility as well as didactical aspects have to be taken into account.
We sketch a sample strategy and its feedback generators for providing feedback
for the construction of propositional formulas (see Figure 2, Step 1, for a partial
illustration):

(1) Correctness: Is the constructed formula correct or not correct?

(2) Misconceptions: Typical misconceptions (e.g., mixing up premise and con-
clusion of an implication, especially when modelling “only if”-statements)
are identified using an abstract rule framework [4]. They are the basis for
several feedback generators:

(a) Hint at the misconception (e.g., “Do you remember how ‘if’- and ‘only
if’-statements can be expressed in propositional logic?”)

(b) State the misconception explicitly (e.g., “You might have mixed up ‘if’
and ‘only if’.”)

(c) Point out the precise position of the mistake

(3) Distinguishing model: A valuation that distinguishes the constructed formula
from a correct formula.

2.3 Educational Tasks
Iltis supports a variety of educational tasks for foundations of computer science
logic, formal languages, and (parts of) complexity theory. In addition to content-

specific tasks, there are also tasks to smooth out multi-step exercises, such as
multiple-choice tasks.

Foundations of logic. Educational tasks for foundations of logic cover proposi-
tional logic, modal logic, and first-order logic content (see Table 1 for an overview).
A broad spectrum of typical tasks is covered, including:

• Evaluating formulas: Students can evaluate formulas for a given interpre-
tation by constructing truth tables for propositional formulas or evaluation
tables for a given modal formula and Kripke structure, respectively.

• Constructing models: Students can construct models (i.e., satisfying inter-
pretations) for formulas. For propositional logic, models are specified by
valuations for all variables, for modal logic by Kripke structures; and for
first-order logic, students can construct structures.

• Creating signatures: Students can specify a suitable logical language for
describing a scenario. For propositional and modal logic, students can specify
which propositional variables they want to use and describe their meaning in
natural language (see Figure 7). For first-order logic, this is currently being
implemented. A prototype for describing first-order signatures in natural
language is available.

• Constructing formulas: Students can construct formulas for natural-language
descriptions of scenarios provided by the instructor. For first-order logic,
there is a second variant where teachers can provide a textual description
of a unary graph query as well as a sample graph, and students are asked to
provide a first-order formula that selects the same nodes as the graph query
on this sample graph (see Figure 6 for both variants).

• Applying equivalence transformations: Students can transform propositional,
modal, and first-order formulas step-by-step either into an equivalent target
formula or into an equivalent formula in a given normal form.

• Testing satisfiability: Students can test formulas for satisfiability using sev-
eral methods such as resolution or the tableau calculus.

Foundations of formal languages. Educational tasks for foundations of formal
languages cover regular languages and context-free languages (see Table 2 for an
overview):

Imprint Privacy Policy

 2024-02-19 14:44 +0100

Iltis

Modelling a graph property

×

Consider the following directed graph:

X

?

Construct a first-order formula with a free variable

which selects exactly those nodes which have an incoming

edge if they also have an outgoing edge.

Your formula is not correct.

Your formula selects nodes incorrectly.

• Some nodes (?) are not selected, but they

match the description.

• Some nodes (X) are selected, but they do not

match the description.

Finish Task

φ(x) x

φ(x) = ∃y E(y,x) → ∃z E(x,z)

 devs

Iltis https://iltis.cs.tu-dortmund.de/educational-column/#...

1 of 1 2/19/24, 15:17

Imprint Privacy Policy

 2024-02-19 14:44 +0100

Iltis

Modelling with arbitrary signatures

×

At the web company Millisoft, all employees are either

computer scientists or mathematicians. The employees

work together in teams, with one of the employees acting

as team leader. Each employee works in exactly one team.

We represent Millisoft as a structure over the signature

below, whose universe consists of all employees of the

company. Model the given statement by a first-order

formula over said signature.

No team with at least two computer scientists has a

mathematician as team leader.

Your formula is not correct.

Your formula does not express the intended

property. The structure (A, C, M, T, f) with

• Universe A={Beth, Alice},

• Relation C={},

• Relation M={Beth, Alice},

• Relation T={(Alice, Alice), (Alice, Beth), (Beth,

Beth), (Beth, Alice)} and

• Function f={Beth↦Alice, Alice↦Alice}

is a counterexample because it has the intended

property but does not satisfy your formula.

Finish Task

∀x∀y[C(x) ∧ C(y) ∧ T(x,y) ∧ ¬M(f(x))]

 devs

: is a computer scientist

: is a mathematician

: and work in the same team

: is the team leader of 's team

Signature

C(x) x

M(x) x

T (x, y) x y

f(x) = y y x

Iltis https://iltis.cs.tu-dortmund.de/educational-column/#...

1 of 1 2/21/24, 12:14

Figure 6: Educational tasks for constructing first-order formulas over graph signatures (left) and
general signatures (right).

Imprint Privacy Policy

 2024-02-19 14:44 +0100

Iltis

Choose suitable propositional variables

Tim and his friends plan a film night. They still have to agree

on which films they want to watch. The choices are the four

films: The Godfather, Airplane! and The Dark Knight.

Among other things, they have agreed to watch at least one,

but not all, of the three films. Help Tim and his friends make

their choice of films to watch by first selecting propositional

variables and their intended meanings, in order to model

their requirements later in propositional logic.

G : ✓

B : Check

Unfortunately, it is not entirely clear what

you mean.

Did you mean: "The group watches The

Dark Knight."?

Yes No

Add another variable

Finish Task

The group watches The Godfather.

The group watches Batman

i

 devs

Iltis https://iltis.cs.tu-dortmund.de/educational-column/...

1 of 1 2/21/24, 11:07

Figure 7: Educational task for specifying propo-
sitional variables and their intended meaning.
The intended meaning is verified via natural lan-
guage processing models (currently fine-tuned
for German exercises). Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Determine Myhill-Nerode classes

Determine the equivalence classes of the Myhill-Nerode

relation for the language with

For each equivalence class, provide a regular expression

that describes it.

Add new equivalence class

Abschließen

L(α)

α = abb
∗.

ε

ab*

 devs

Your regular expressions do not describe the

equivalence classes of the given language.

The word b is not described by any of your regular

expressions. However, the languages of your regular

expressions have to form a partition of all words over

the given alphabet.

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/21/24, 11:15

Figure 8: Educational task for identifying the
Myhill-Nerode classes of a language.

• Modelling: Students can model languages with a variety of representations.
For regular languages, (non-)deterministic automata and regular expressions
can be used. For context-free languages, deterministic and general push-
down automata and context-free grammars can be used.

• Specifying Myhill-Nerode classes: Students can specify regular expressions
for the equivalence classes of the Myhill-Nerode relation.

• Specifying derivations: Students can derive a given word from a given
context-free grammar step-by-step. For each step, Iltis checks whether it is
valid.

• Specifying words: Students can specify words over a given alphabet. Then,
Iltis checks whether they are contained in given (combinations of) regular
or context-free languages. In this way, students can also prove the non-
equivalence of languages.

Foundations of complexity theory. Educational tasks for foundations of com-
plexity theory and computability theory are currently under development. In
complexity theory, educational tasks for understanding algorithmic problems and
computational reductions are already covered:

• Interacting with graphs: For understanding graph problems, students can
select and colour nodes and edges in given graphs and build new graphs
from scratch. The user input can be tested for a variety of conditions. This
educational task can be used very flexibly.

• Specifying graph reductions: Students can specify certain graph reductions
by specifying in a modular way how to map nodes and edges from an instance
of the source problem to an instance of the target problem.

3 Instructor’s Perspective: A Course Set-Up
We integrated web-based exercises provided by Iltis into our courses Logic in
Computer Science (Bachelor, mandatory, 2 + 1 contact hours)2 and Foundations
of Theoretical Computer Science (Bachelor, mandatory, 4 + 2 contact hours)3 at
Ruhr University Bochum, each with > 200 students. The exercises are also used in
similar courses at TU Dortmund University with > 400 students.

2The web-based exercises for Logic in Computer Science can be found at https://iltis.cs.
tu-dortmund.de/Logic-external/de/

3The web-based exercises for Foundations of Theoretical Computer Science can be found at
https://iltis.cs.tu-dortmund.de/TCS-external/de/

https://iltis.cs.tu-dortmund.de/Logic-external/de/
https://iltis.cs.tu-dortmund.de/Logic-external/de/
https://iltis.cs.tu-dortmund.de/TCS-external/de/

Course organisation. The set-up of the courses differs slightly, we focus on the
Foundations of Theoretical Computer Science course covering regular languages,
context-free languages, an introduction to computability theory, and an introduction
to complexity theory. Organisation-wise, the course consists of:

• Lectures: Two traditional 90-minute lectures per week with all students,
interrupted by few questions testing understanding via a student classroom
response system.

• Tutorials: One 90-minute tutorial per week in groups of 20–30 students.
First half spent on active problem solving in small groups and discussion.
Second half spent on discussing solutions to assignments.

• Assignments: Consisting of (a) interactive web-based exercises provided by
Iltis, some graded and some ungraded; (b) traditional assignments graded by
tutors. The interactive web-based exercises are typically easier and students
can try as often as they want, receiving feedback from Iltis for each attempt.

Our objective for the integration of interactive, web-based exercises was two-
fold. First, to offer students the opportunity to train basics and receive feedback
very early on. Having understood the basics, they then go on to tutorials and
to the more complex traditional assignments. Second, outsourcing the basics to
Iltis helps to save valuable time of teaching assistants, which then can be used to
discuss more difficult topics and for in-depth problem solving in tutorials. The
web-based exercises are provided at the time of the lecture and our recommendation
for students is to do the web-based exercises before going to tutorials and starting
with the analog exercises.

Technical organisation. The assignments – web-based and analog – are managed
through our universities learning management platform Moodle. Both web-based
and analog exercises have a digital twin in Moodle. The grading of the web-based
exercises is handled by Iltis; the grading of the analog exercises by teaching
assistants. The accounting of points is handled by Moodle.

Iltis exercises are integrated into the learning management platform via the
LTI standard [10], which is supported by many modern teaching management
platforms. They are stored in easily configurable XML files which are managed
via Git repositories. Content for new courses can be created by starting from a
clone of an existing course, selecting from a portfolio of existing exercises and
adapting them according to the requirements.

4 Research Challenges & Opportunities
Building teaching support systems for formal foundations of computer science
comes with a multitude of challenges and research opportunities. We sketch some
of them.

A theory challenge
Providing teaching support for formal foundations of computer science – in-
cluding feedback and advice for students and learning analytics for instructors –
requires to solve algorithmic problems that are in most cases provably algorith-
mically hard or even unsolvable.

The main road block for teaching support systems for formal foundations
is that many of the algorithmic tasks that need to be solved are inherently hard
or even algorithmically unsolvable in general. For instance, deciding whether a
scenario has been correctly modelled by a first-order formula is algorithmically
impossible in general, due to the undecidability of testing whether two first-order
formulas have the same meaning. While this is possible for propositional logic,
no efficient algorithm is known so far. The same algorithmic hardness holds for
many educational tasks for the foundations of logics, formal languages, complexity
theory, and computability theory. Providing feedback beyond the mere fact whether
a solution is correct – i.e., feedback that hints at the students’ misconceptions or
gently guides students to correct solutions – is potentially even harder.4

Attacking this challenge requires to find creative approaches for circumventing
algorithmic hardnesses and often leads to interesting theoretical research questions.
Hope for successfully tackling this challenge is provided by the fact that human
tutors manage to provide feedback and advice.

We sketch two concrete examples, where methods from theoretical computer
science helped us to come up with approaches for providing meaningful feedback
and advice for students:

• Explaining mistakes in context-free grammars. In ongoing work on pro-
viding explanations for mistakes in modelling with context-free formalisms,
we aim for feedback along the lines of the following interaction.

Assignment: Design a context-free grammar for L = {anbn+2 | n ∈ N}.

Student: S → aS b | abb

Feedback (provided in customizable stages):

(1) Correctness: Your grammar is not correct.

4The web-based teaching support system AutomataTutor provides advanced, high-level feedback
for finite automata constructed by students [3].

(2) Pinpointing mistakes:

(a) Hinting at a wrong language: Your grammar describes the language

L = {anbn+1 | n ∈ N}.

(b) Hinting at a wrong rule: It might help to have a look at the rule

S → abb.

(c) Provide a counterexample: The language described by your grammar
contains the word abb, which is not in L.

Even though testing correctness of student-provided solutions is undecidable
in general, the above explanations can be provided efficiently by combining
theory for bounded context-free languages [7], canonization of grammars,
and grammar transformations.

• Designing computational reductions. For teaching reductions, instructors
often design tasks for (i) understanding the computational problems involved,
(ii) exploring existing reductions via examples, and (iii) designing reductions
between computational problems. Task (iii) is a challenge for most students
as the design of reductions usually does not follow a straightforward path
but requires some creativity by students. When looking for a reduction,
one approach by a typical expert is to sequentially try a number of building
blocks that they have encountered in the context of other reductions before.
An example is provided by the standard reduction from the problem of
finding a directed Hamilton path to finding an undirected Hamilton path that
transforms a directed graph to an undirected graph by mapping each node

v
to a small gadget

vin v vout
. Constructing such gadgets is one of the

typical building blocks when designing reductions.

One possible approach for supporting instructors in teaching how to design
reductions, is to (a) identify and formalize typical building blocks of re-
ductions, (b) develop a simple descriptional language for reductions that
allows for combining the building blocks in a simple, modular manner, to (c)
study the expressive power of such a language as well as the computational
problems arising in finding reductions in such languages, and finally (d) for
designing suitable feedback mechanisms for student attempts on construct-
ing reductions. The exploration of (a)–(d) lead to interesting theoretical
problems and has already been prototypically implemented (see Figure 5).

An engineering challenge
Building a flexible, extensible, usable, and maintainable teaching support system
for formal foundations of computer science is a complex engineering effort
which requires, among others, to transfer theoretical results to practice, and to
integrate state-of-the-art solutions from a diverse set of domains.

Building a teaching support system is inherently complex and requires the im-
plementation and integration of, among others, modules for providing educational
tasks, feedback and advice to students, learning analytics to teachers, interacting
with learning management platforms, etc.

There are also challenges specific to teaching support systems for formal
foundations, we sketch two of them:

• Algorithms for providing feedback may be known in theory, but may be
inefficient in practice and in particular not scale to thousands of users. In our
experience, this can often be addressed by employing dedicated SAT solvers
and by building custom solutions, e.g., for handling symmetries.

• Helping students to learn how to translate between natural language and
formal language — typically a first step when attacking real world problems
with formal methods — has been avoided so far in most teaching support
systems as it requires to integrate natural language processing. While modern
large language models are powerful enough for educational tasks for bridging
this natural-formal language gap, a lot of data, engineering, and fine-tuning
is required. The main challenge is that a teaching support system should
provide correct feedback with very high probability. Figure 7 shows a
prototype for an educational task where students can specify propositional
variables and their meaning in natural language.

A CS education research challenge
Helping students with a teaching support system requires to understand (among
others) students’ learning behaviour and motivation, as well as common miscon-
ceptions and difficulty-generating factors for formal foundations of computer
science.

Didactical aspects of advanced teaching support systems for formal foundations
of computer science have mostly been ignored in research. For most concepts
taught at university level courses, few didactic foundations have been laid and
almost no quantitative and qualitative studies have been done. As a result, there
are few guidelines – for example, what common misconceptions students have and

how to overcome them, or which factors determine the difficulty of exercises – that
can be given to designers of teaching support systems.

Example research questions that have not been addressed for formal foundations
of computer science in higher-education contexts are:

(i) How do teaching support systems affect students’ learning behaviour and
motivation?

(ii) How can teaching support systems be set up to be most effective for hetero-
geneous groups of students?

(iii) What misconceptions and difficulty-generating factors hinder student success
in formal foundations of CS?

(iv) Do (personalized) interventions increase the impact and use of the teaching
support system?

Answering these and similar research questions requires a tight integration of
expertise in CS education research, educational psychology, formal foundations
of computer science, and in building teaching support systems. Data provided by
teaching support systems such as Iltis is essential.

Acknowledgments
Many people are contributing to the Iltis project in various ways. Without them,
the system would not exist in its current form. The implementation of the system
has been supported by Sven Argo, Shrutarv Awasthi, Ariane Blank, Lukas Dienst,
Gaetano Geck, Alina Ignatova, Tristan Kneisel, Alexandra Latys, Artur Ljulin,
Johannes May, Jan Michalak, Sebastian Peter, Lukas Pradel, Lars Richter, Patrick
Roy, Jonas Schmidt, Cedric Siems, Daniel Sonnabend, Fynn Stebel, Felix Tschirbs,
Patrick Wieland, Oskar Wilke, and Jan Zumbrink.

The design of the user interface was supported by Christine Orhan. The creation
of the course material has been supported by Jill Berg, Tom-Felix Berger, Jan Eyll,
Alicia Gayda, Elias Radkte, Mira Schwartz, Dennis Stanglmair, Marco Wojtek,
and Cara Volbracht.

Florian Schmalstieg, Thomas Schwentick, Christopher Spinrath, and Nils
Vortmeier are providing advice for many aspects of the project.

The example on how to provide extensive feedback for modelling with context-
free languages is from joint work of Marko Schmellenkamp and Thomas Zeume
with Sven Argo, Cedric Siems, Fynn Stebel, and Sandra Kiefer. The example on
how to provide interactive exercises on computational reductions is from joint work
of Fabian Vehlken and Thomas Zeume with Julien Grange and Nils Vortmeier. The

research questions for CS education research are from a joint project of Thomas
Zeume with Philipp Döbler and Jakob Schwerter.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation), grant 448468041.

References
[1] Der Iltis ist das Tier des Jahres 2024. https://www.pronatura.ch/de/
tier-des-jahres-2024-iltis. Accessed: 2024-02-15.

[2] Andrea L. Beach, Charles Henderson, and Noah Finkelstein. Facilitating change
in undergraduate STEM education. Change: The Magazine of Higher Learning,
44(6):52–59, 2012.

[3] Loris D’Antoni, Martin Helfrich, Jan Křetínský, Emanuel Ramneantu, and Max-
imilian Weininger. Automata tutor v3. In Shuvendu K. Lahiri and Chao Wang,
editors, Computer Aided Verification – 32nd International Conference, CAV 2020,
Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pages
3–14. Springer, 2020.

[4] Gaetano Geck, Artur Ljulin, Sebastian Peter, Jonas Schmidt, Fabian Vehlken, and
Thomas Zeume. Introduction to Iltis: an interactive, web-based system for teaching
logic. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2018, pages 141–146. ACM,
2018.

[5] Gaetano Geck, Christine Quenkert, Marko Schmellenkamp, Jonas Schmidt, Felix
Tschirbs, Fabian Vehlken, and Thomas Zeume. Iltis: Teaching logic in the web.
CoRR, abs/2105.05763, 2021.

[6] Gesellschaft für Informatik e. V. Empfehlungen für Bachelor- und Master-Programme
im Studienfach Informatik an Hochschulen. https://gi.de, 2016.

[7] Seymour Ginsburg and Edwin H. Spanier. Bounded algol-like languages. Transac-
tions of the American Mathematical Society, 113(2):333–368, 1964.

[8] Joint Task Force on Computing Curricula, Association for Computing Machinery
(ACM) and IEEE Computer Society. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. Association
for Computing Machinery, New York, NY, USA, 2013.

[9] Susan R. Singer, Natalie R. Nielsen, and Heidi A. Schweingruber. Discipline-based
education research. Washington, DC: The National Academies, 2012.

[10] The learning tools interoperability protocol. https://www.1edtech.org/
standards/lti. Accessed: 2024-02-24.

https://www.pronatura.ch/de/tier-des-jahres-2024-iltis
https://www.pronatura.ch/de/tier-des-jahres-2024-iltis
https://gi.de
https://www.1edtech.org/standards/lti
https://www.1edtech.org/standards/lti

	Introduction and Motivation
	An Introduction to Iltis
	Compositional Task Model
	Compositional Feedback Model
	Educational Tasks

	Instructor's Perspective: A Course Set-Up
	Research Challenges & Opportunities

