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This month, in the Distributed Computing Column, Helen Xu is discussing ev-
erything you need to know about how to design efficient parallel applications that
operate on dynamic graphs! She focuses on three key aspects: (1) How do you de-
sign the containers (i.e., data structures) that encapsulate the dynamic graph? (2)
What is the right framework (i.e., interface) for interacting with a dynamic graph?
(3) How do you fairly benchmark the performance of your parallel application for
dynamic graphs?

To answer these questions, she discusses two main results. First, she presents a
new container for dynamic graphs called F-Graph. F-Graph is a multicore batch-
parallel dynamic-graph system that is optimized for spatial locality. It is built
on top of a batch-parallel packed-memory array, yielding fast performance for a
variety of graph applications. Next, she presents BYO, a unified framework for
large-scale graph containers designed to facilitate benchmarking. BYO provides
a simple and abstract container API, along with a clean interface. She then uses
BYO to evaluate 27 different graph containers on 10 different graph algorithms
using 10 large graph datasets. The resulting data illuminates the issues and trade-
offs involved in designing parallel applications for dynamic graphs.

Overall, then, this article by Helen Xu provides significant insight into both
the theory and practice of efficient parallel computation for dynamic graphs.

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.
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1 Introduction to dynamic-graph containers
Dynamic graphs, or graphs that change over time, underlie many applications such as social
networks [7], protein interactions [6], and paper citation networks [45]. Systems for dynamic
graphs need to efficiently 1) apply a stream of updates (e.g., edge insertions and deletions) and
2) run queries (i.e., algorithms) on the updated graph. Unfortunately, these two objectives often
conflict with each other [86].

In this column, I will address two main questions: 1) how to develop efficient parallel
dynamic-graph data structures, or containers, that support both fast updates and fast queries
and 2) how to comprehensively and fairly benchmark dynamic-graph containers.

Query-update tradeoff. Let us examine several canonical graph containers to concretely un-
derstand the tradeoff between updates and queries. These examples will illustrate the challenges
to supporting both fast updates and fast queries without giving up performance along either axis.

Perhaps the most classical graph data structure is the adjacency matrix. Given a graph with
n vertices, the associated adjacency matrix is an n×n matrix A where element Auv is 1 if there is
an edge from vertex u to vertex v, and 0 otherwise. The adjacency matrix format is ideal for edge
updates - adding an edge to a graph stored in this format takes only O(1) time to find and set the
correct location in the matrix. Finding the existence of any particular edge also takes O(1) time. It
would seem that if one had O(n2) space, the adjacency matrix would be an ideal graph container.

In practice, however, the main operation underlying graph algorithms is a scan, or iteration,
through a vertex’s neighbors, rather than individual edge-existence queries [69]. One common
pattern in graph algorithms is processing a source vertex and adding its neighbors to the “active
set” for the next round of processing. Finding and adding all neighbors of a given vertex to a
set requires a vertex scan. Figure 1 provides concrete examples of how vertex scans are the main
workhorse of graph algorithms.

Furthermore, many real-world graphs exhibit sparsity: i.e., they contain many fewer edges
than the total possible number of edges [64]. That is, almost all vertices have degree much less
than O(n). For example, the LiveJournal graph [7] has about 4.8 million vertices, but its average
degree is only about 18. Therefore, an ideal graph data structure would support a scan of a given
vertex v’s neighbors in O(degree(v)) time. However, an adjacency matrix requires O(n) time
to scan the neighbors of any vertex, regardless of degree.

Therefore, the most popular graph data structure in high-performance graph applications
is not the adjacency matrix but rather the Compressed Sparse Row (CSR) [72] representation.
CSR stores a graph with m edges and n vertices in two arrays: an edge array A to store m neighbor



 Input: graph G, source vertex src 
 let Q be a queue 
 label src as explored 
 Q.enqueue(src) 
 while Q is not empty: 
   v = Q.dequeue() 
   for all edges (v, w) in G.neighbors(v): 
     if w not explored: 
       label w as explored 
       Q.enqueue(w) 

Scan

(a) Breadth-first search

 Input: graph G 
 let triangle_count = 0 
 let E = G.edges() 
 for (u, v) in E:  
   intersect neighbors of u and v: 
     if u and v share a neighbor w: 
       triangle_count++; 

Scan

(b) Triangle counting

Figure 1: Example of how vertex scans underlie two fundamental graph algorithms: (a)
breadth-first search and (b) triangle counting.

U

0 1 2 3
V

0

1

2
3

1 1

1

1 1

1

0 2 2 5

1 2 0 2 3 1

Offsets array

Edges array

(a) Adjacency matrix (b) Compressed Sparse Row 

Figure 2: Example of the same graph stored in (a) adjacency matrix format and (b) Compressed
Sparse Row format.

ids (for the edges) and an offsets array O to store n start indices (one per vertex). The neighbors of
each vertex v form a contiguous fragment of A, so scanning over a given vertex v’s neighbors only
requires O(degree(v)) time. Furthermore, the neighbor ids of the edges are laid out contiguously
in memory, so CSR exhibits good spatial locality and supports fast scans. However, CSR was
not designed for dynamic graphs and is therefore prohibitively expensive to update: inserting
a single edge may require Θ(m) time to move all of the other edges in the contiguous edge
array. Figure 2 provides an example of a graph stored in adjacency matrix and CSR format.

High-performance dynamic-graph containers for multicores. To address this limitation,
significant research effort over the past decade has been devoted to developing efficient dynamic-
graph containers [38, 53, 32, 54, 34, 63, 75, 78, 82, 83, 33, 80, 52, 77, 43, 67, 24, 66, 84, 87].

The goal of this line of work is to introduce data structures to support both efficient updates
and algorithms for dynamic graphs. Figure 3 provides a cartoon illustration of the query-update
tradeoff and intuition for the data-structure design objectives.

When it comes to developing fast dynamic-graph data structures on modern multicores,
codes must be optimized for the core features of modern multicore machines - many threads,
large main memories, and a steep memory hierarchy [86]. Since today’s multicores include
large main memories (possibly 1TB or more), many of the dynamic-graph containers reside in
memory. As we shall see, in-memory dynamic-graph containers must be optimized for locality
to efficiently make use of both the memory subsystem as well as parallelism in multicores.
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Figure 3: The query-update tradeoff and the goal of dynamic-graph containers.

2 F-Graph: A dynamic-graph system based on the Com-
pressed Packed Memory Array

This section describes F-Graph, a multicore batch-parallel dynamic-graph system, as a case
study for how to create efficient parallel dynamic-graph containers by optimizing for spatial
locality [80]1. As we will see, F-Graph overcomes the query-update tradeoff with a cache-
optimized dynamic-array data structure. It supports both faster algorithms and faster updates
compared to state-of-the-art dynamic-tree-based graph containers.

The associated artifact2 was honored with the Best Artifact Award at PPoPP ’24.

Batch-parallel dynamic-graph containers

Many modern data structure libraries, including dynamic-graph containers, parallelize batch
updates that insert or delete multiple elements rather than point updates because each individual
update is usually not worth parallelization due to their sublinear complexity [42, 9, 33, 34, 71,
39, 74, 8, 55]. Direct algorithmic support for batch updates simplifies parallelism and reduces
the work per update by amortizing shared work between updates (e.g., searches for the target
location in the data structure).

Batch-parallel data structures demonstrate the important role that the memory subsystem
plays in good utilization of multithreaded parallelism and overall performance in practice.
Almost all batch-parallel data structure implementations are based on pointer-based data struc-
tures such as trees [33, 34, 17, 42, 9, 71, 39, 74]. However, the main bottleneck in the parallel
scalability of these implementations is not parallelism but memory bandwidth limitations due to
pointer indirections during tree traversal [17, 42]. Dhulipala et al. [34, 33] address these issues
by adding blocking and compression to improve spatial locality in trees. These batch-parallel
cache-optimized trees form the basis for Aspen [34] and CPAM [33], two state-of-the-art
dynamic-graph containers.

Despite these improvements, cache-optimized trees inherently leave performance on the
table because they incur random memory accesses rather than reading memory contigu-
ously [12, 63, 83, 85]. Theoretically, cache-friendly trees (e.g., B-trees [10]) are asymptotically
optimal in the classical external-memory model [3] for both updates and scans. Empirically,
however, tree-based data structures are over 2× slower to scan compared to array-based data

1The full version of the paper can be found on arXiv at https://arxiv.org/abs/2305.05055.
2The artifact and library are available at https://github.com/wheatman/Packed-Memory-Array.

https://arxiv.org/abs/2305.05055
https://github.com/wheatman/Packed-Memory-Array
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Figure 4: The high-level structure of a PMA and how the single flat array defines an implicit tree.

structures support scans because arrays avoid pointer chasing and therefore take advantage of
sequential memory access [63, 79, 85].

Optimizing for sequential access with PMAs The Packed Memory Array (PMA) [47, 13,
14], a dynamic array-based data structure optimized for cache-friendliness (i.e., spatial locality),
is a promising candidate for a batch-parallel dynamic-graph container. So far, the PMA has ap-
peared in domains such as graph processing [66, 82, 30, 83, 32, 63, 78], particle simulations [37],
and computer graphics [73].

Even though the PMA has appeared in several systems for dynamic graphs, past imple-
mentations exhibit low update throughput compared to batch-parallel trees because the PMAs
did not include direct algorithmic support for parallel batch updates [83]. Previous work [31]
introduced a serial batch-update algorithm for PMAs, but stopped short of parallelization.

Adding batch-parallelism to the Packed Memory Array

PMA structure. The primary feature of a PMA is that it stores its data in sorted order in one
contiguous array, which enables fast cache-efficient scans through the elements [47, 13, 14].
To enable efficient updates, the PMA also stores (a constant factor of) empty spaces between
its elements to reduce data movement upon updates. Specifically, a PMA with n elements uses
N =Θ(n) cells.

The PMA defines an implicit binary tree which is used during insertions to maintain the
proper amount of empty spaces throughout the array. The array is logically (not physically)
divided up into leaves of size Θ(log(N)) cells, so the implicit tree has Θ(N/log(N)) leaves and
height Θ(log(N/log(N))). Every node in the PMA tree corresponds to a region of cells. Each leaf
i∈{0,...,N/log(N)−1} has the region [ilog(N),(i+1)log(N)), and each internal node’s region en-
compasses all of the regions of its descendants. The density of a region in the PMA is the fraction
of occupied cells in that region. Figure 4 illustrates a PMA and its corresponding implicit tree.

Serial inserts in PMAs PMA inserts use the implicit tree to maintain the overall structure.
As shown in Figure 5(a), a PMA insert first searches for the target leaf that the element should
go in the sorted order. It then places the element at the correct location in that leaf. The density
bounds guarantee that there is always at least one free cell to place an element in each leaf. Next,
it counts the cells in all necessary nodes in the PMA implicit tree, traversing up until it finds
a node that does not violate its density bound. Finally, based on the results from the count, the
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Figure 5: Example of how to perform (a) point inserts and (b) batch inserts in a PMA. The
numbers in the count step are the densities of each leaf. In this example, the density bound
is 0.9. As shown in step (1), the batch-merge step may overflow a leaf if there are not enough
free cells. In that case, elements are stored out of place until the redistribute phase. The full
paper contains more details about all steps of the batch-insert algorithm.

PMA redistributes elements equally among leaves in the node it counted up to, resolving the
density bounds in all of its descendants.

Parallel batch-update algorithm for PMAs. The batch-insert3 algorithm for PMAs takes
as input a PMA with n elements and a batch with k sorted elements to insert. An unsorted batch
can be converted into a sorted batch in O(klog(k)) work.

The batch-insert algorithm for PMAs is optimized for the case when the batch is neither
too small nor too large. At one extreme, if k is very small (e.g., k<100), the overheads from
the batch-insert algorithm outweigh the benefits, so point updates are more efficient than batch
updates. At the other extreme, if k is large (e.g., k≥n/10), the optimal algorithm is to rebuild
the entire data structure with a linear two-finger merge. The batch-insert algorithm for PMAs
performs local merges to address the intermediate case between these two extremes.

At a high level, the batch-insert algorithm for PMAs relies on recursive local merges of the
batch elements to the correct PMA leaves in the data structure. In addition to the implicit tree for
densities, the PMA also defines another implicit binary search tree on the PMA leaves, where
each node is one leaf in the tree (as opposed to the internal nodes encompassing multiple leaves
as in the density tree). The recursion begins in the middle leaf of this PMA binary search tree,
merges in the appropriate elements from the batch, and in parallel, recurses on the two halves.
There are some similarities to batch-insert algorithms for trees, which are implemented with
unions/differences [17]. Figure 5(b) provides a worked example of a batch insert in a PMA.

There are two unique challenges to parallel batch updates in PMAs: 1) potentially over-
flowing leaves with local merges, and 2) efficiently determining which regions to redistribute
after the batch merges (via counting). Since multiple leaves may be written to in parallel
during the batch merge step, the algorithm cannot overwrite neighboring leaves, even if there
are not enough cells to accommodate all elements destined for a given leaf. To address this
issue, the batch-insert algorithm for PMAs may store some elements out-of-place temporarily.
Furthermore, naively parallelizing the counting step to determine densities (and therefore the
regions to redistribute) over the elements in the batch is technically correct because the counting

3The batch-parallel PMA supports both inserts and deletes, but we focus on the insert case for ease of
presentation. Deletes are implemented symmetrically to inserts, and the full version of the paper contains
experiments for both.
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Figure 7: Relative speedup of graph algorithms over C-PaC. The algorithms tested are
PageRank (PR), Connected Components (CC), and single-source Betweenness Centrality (BC).
The algorithms were tested on a suite of graphs ranging in size from about 86 million edges
to about 3.6 billion edges.

is a read-only operation, but may perform a great deal of redundant work. Please see the full
paper for details about the batch-insert algorithm, which relies on an efficient parallel counting
algorithm to achieve the desired asymptotic bounds.

Using the batch-parallel PMA as a dynamic-graph container
Storing a graph in a compressed flat array F-Graph4 is built on a single batch-parallel PMA
that stores the entire graph as a list of edges in sorted order. It differs from traditional graph
representations because it uses only a single array to store both the vertex and edge data. To
understand the difference, recall the traditional CSR representation, which stores the graph in
two arrays. The offsets array saves space: the edges array then only needs to store destinations
and not sources.

As an additional optimization, the PMA underneath F-Graph is compressed with delta com-
pression and byte codes [16, 15, 70]. With delta compression, the Compressed PMA (CPMA)
stores differences (deltas) between elements rather than the full elements in all elements except
the first in each PMA leaf. Figure 6 illustrates how delta compression saves space by eliding
out the source vertex in almost all of the edges (except the start of each leaf and and the first
edge of each vertex).

4F-Graph uses only one compressed PMA (a flat array) to store the graph. The F in F-Graph comes from the
musical key of F, which has one flat.
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Figure 8: Insert throughput as a function of batch size on the Friendster graph (num. vertices
≈125 million, num. edges ≈3.6 billion). Edges to add were generated according to an rMAT
distribution [20].

Results The empirical evaluation demonstrates that F-Graph is on average 1.2× faster on a
suite of graph algorithms, achieves 2× faster throughput for batch updates, and uses marginally
less space to store the graphs compared to C-PaC, a state-of-the-art dynamic-graph system based
on blocked compressed trees [33]. Furthermore, F-Graph is on average 1.3× faster on graph
algorithms, achieves 2× faster throughput for batch updates, and uses 0.6× space to store the
graphs compared to Aspen, another high-performance tree-based dynamic-graph system [34].

The full paper includes a much more thorough evaluation, but this article includes a couple
of representative plots in Figures 7 and 8. All experiments were run on a 64-core 2-way
hyper-threaded Intel machine with 256 GB of memory from AWS [5].

The empirical results demonstrate the potential for dynamic-graph containers to overcome
the query-update tradeoff by optimizing for spatial locality. Although cache-optimized trees
theoretically dominate5 PMAs on inserts and match PMAs on scans, in practice, trees are slower
to scan because of pointer indirections. The basic theoretical models do not capture the cost of
these random accesses, but they have a significant effect on empirical performance. Furthermore,
the PMA’s cache-friendliness enables F-Graph to supports batch updates much faster than the
theoretical bound suggests and even faster than cache-optimized trees because of its locality6.

Discussion

The empirical advantage of F-Graph, a PMA-based dynamic-graph container, over C-PaC and
Aspen, two tree-based dynamic-graph containers, demonstrates the importance of optimizing
parallel data structures for the memory subsystem. Specifically, the CPMA’s array-based layout
enables it to take advantage of the speed of contiguous memory accesses. Despite the theoretical
prediction, the batch-parallel CPMA empirically overcomes the query-update tradeoff due to
its locality.

5Given a cache-line size B and n elements, PMAs support inserts in Ω(log(n)+log2(n)/B) cache-line transfers,
while B-trees support inserts in O(logB(n)) cache-line transfers in the external-memory model [3].

6In microbenchmarks, the PMA was shown to have many fewer L1 and L3 misses when compared to
cache-optimized trees.



3 Fair and comprehensive benchmarking of graph contain-
ers

The previous sections gloss over an important question in end-to-end system development -
how does the overall dynamic-graph system implement and run the algorithms? Let us take a
step back to examine overall dynamic-graph system performance, since the goal is to efficiently
perform both algorithms and updates on the graph. The choice of container is a key decision
for holistic system performance, but it is not the only factor.

Structure of dynamic-graph systems. General graph-processing systems have two main
components: the programming framework and graph container. The container stores the
graph topology and handles changes to the graph, while the programming framework uses an
Application Programming Interface (API), or a specification for how two system components
communicate with each other, provided by the container to express and perform analytics.

So far, we have focused on optimizing the graph container in the previous sections, but
the programming framework is an equally important factor in graph-algorithm performance.
Since both components are necessary for good performance, significant research effort has been
devoted to developing and optimizing both sides. On the graph framework side, researchers
have developed many high-performance abstractions, such as Ligra [69], the Graph Based
Benchmark Suite (GBBS) [35], and the GraphBLAS [28, 27, 51]. Previous work has shown that
these abstractions can achieve competitive performance with hand-optimized implementations
such as those from the GAP benchmark suite [11].

Issues with current methods for creating dynamic-graph systems
Although there has been great progress on developing and optimizing both the programming
framework and graph container, these two directions have mostly been independent lines of
work. An ideal dynamic-graph system would combine advancements in both dynamic-graph
programming frameworks and containers, as shown in Figure 9. However, integrating different
components is challenging because often the framework and container implementations are
tightly coupled.

Comprehensiveness of system. The separation between framework and container develop-
ment results in systems that are limited in terms of performance, capabilities, and generality.

On the frameworks side, for example, the Ligra/GBBS/GraphBLAS abstractions express al-
gorithms in terms of basic data-access primitives to build algorithms that could be implemented
by any data structure, but the current codebases use CSR as their representation for simplicity.
Although CSR enables good graph-algorithm performance, as we have discussed, it does not
support updatability. Furthermore, there are lines of research focused on developing incremental
[23, 60, 49, 59, 68, 58] and dynamic [65, 76, 57, 56, 2, 21, 48, 41] algorithm frameworks, but
these also implement ad-hoc data structures underneath the framework, leaving performance
on the table.

On the container side, systems that include a new dynamic-graph container often run algo-
rithms with either 1) direct implementations of kernels on top of the container [32, 4, 46, 38, 82]
or 2) ad-hoc implementations of frameworks [63, 80, 83, 34, 33]. Direct implementations can
achieve good performance but limit system generality, since adding new algorithms requires
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Figure 10: A cartoon to illustrate the current practice of evaluating end-to-end dynamic-graph
systems. Even if a paper claims to introduce a new framework or container, they still must
implement the other component, which can affect the overall system performance.

integrating the implementation with each container individually. As a result, systems that
use direct implementations usually compare containers on a relatively small set of algorithms.
Ad-hoc frameworks enable more general evaluations, but they are not as optimized or expressive
compared to implementations that focus on the framework.

Benchmarking graph containers alone. Since the graph-algorithm implementation (either
direct or via a framework) and container are usually highly intertwined, most if not all papers
introducing new dynamic-graph containers perform end-to-end comparisons with existing
systems. Although these comparisons aim to compare the containers because the only novelty
is in the container, there may be counfounding factors from the rest of the system. As a concrete
example, prior evaluations of the dynamic-graph systems SSTGraph [78] and CPAM [33]
compare with earlier dynamic-graph systems such as Aspen [34], but change not only the
container but also important graph-algorithm details, making the source of any measured
improvements unclear. Figure 10 illustrates a high-level view of the difficulty when making
container comparisons from end-to-end systems evaluations.

Significant research effort has been devoted to developing and benchmarking graph con-
tainers and their corresponding systems. These works have reported significant speedups:
• SSTGraph finds a 1.6× speedup over Aspen [78].
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• Terrace finds a 1.7−2.6× speedup over Aspen [63].
• Aspen finds 1.8−15× speedup over prior dynamic data structures [34].
• VCSR finds as 1.2−2× speedup over PCSR [4].
• PPCSR finds a 1.6× speedup over Aspen [83].
• CompressGraph finds a 2× speedup over Ligra+ [22]
• Teseo finds frequent speedups of at least 1.5× over other graph containers [32]
However, it is likely that much of the improvements seen in these works are from factors other
than the graph container itself. A reported performance gain in a proposed dynamic-graph sys-
tem may be the result of many factors: the container might be better, the system may have better
algorithm implementations, or the system may use a better language, compiler, or parallelization
library (e.g., pthreads [62], OpenMP [26], Cilk [18], etc.).

As a result, despite the impressive body of existing work on dynamic-graph systems and
containers, at present it is essentially impossible to answer the very basic question of which
container is appropriate for a given graph application.

4 BYO: A unified framework for benchmarking large-scale
graph containers

To address these issues, this section describes Bring Your Own (BYO)7, a unified programming
framework for benchmarking and evaluating graph containers [81]. BYO is based on the Graph
Based Benchmark Suite (GBBS) [36, 35], a high-performance graph-algorithm framework
implemented on top of a CSR container.

Summary

BYO provides a minimal translation layer between GBBS and graph containers (e.g., Aspen,
SSTGraph, etc.). In other words, BYO introduces a simple and abstract container API, i.e., the

7The full paper is available at https://arxiv.org/abs/2405.11671.

https://arxiv.org/abs/2405.11671


API that the containers need to implement, and implements the popular Ligra/GBBS interface8

using this API. This enables users to easily bring their own graph container and connect it to
the programming framework (it suffices if the container implements BYO’s container API), as
well as to study their own new algorithms (as long as they are expressed in the Ligra/GBBS
interface). Figure 11 shows the relationship between BYO, the programming framework, and
graph container.

The paper uses BYO to perform a comprehensive and fair benchmark of 27 different graph
containers, which include both state-of-the-art data structures such as CPAM [33] and SST-
Graph [78], as well as off-the-shelf data structure libraries such as those from the std standard
library and Abseil [1], an open-source standard library from Google. These generic data-
structure libraries provide a reference implementation and demonstrate how much performance
is left on the table with simple structures and minimal programming effort. The resulting
evaluation involves running 10 fundamental graph algorithms on 10 large graph datasets with
up to 4.2B edges.

To truly evaluate two graph containers in an apples-to-apples way, BYO ensures that the
framework and all other infrastructure (i.e., parallelization library, language, compiler) is con-
sistent across all benchmarks. While this is a seemingly natural requirement, it was not fully
met in existing papers evaluating graph systems.

Simplified graph-container evaluation. The graph container API defined by BYO is very
simple. Specifically, to implement a wide variety of the primitives in GBBS, all the graph
container developer needs to implement is the map primitive (excluding basic query functions
such as num_vertices or num_edges). Map is a functional primitive that applies an arbitrary
function f over a collection of elements. As we shall see, setting different functions in a map can
express other functionality such as reduce and count. A map can easily be implemented with
basic iterators such as those in the C++ standard template library (STL) [61, 50] by applying
the function f to each element in turn. This feature of BYO greatly simplifies the process of
including a new graph container in the benchmark.

For comparison, the graph container API (that the container must support) from GBBS
defines 10 primitive neighborhood operations (e.g., map, reduce, scan, etc.). Similarly, the
GraphBLAS specification [29] includes 12 operations (e.g., mxm, assign, apply, etc.) for
representing graph algorithms.

The main technical challenges in BYO were 1) identifying the correct minimal APIs that
can generalize to large classes of graph containers and algorithms, 2) identifying all the code in
the original GBBS implementation that makes assumptions about the underlying container and
converting them to use modern C++ features that can determine which container functionality
to use at compile-time to maximize performance, and 3) simplifying the design to make the
translation smooth from the container-developer’s point of view.

We built BYO based on GBBS because GBBS has been shown to support a wide variety of
theoretically and practically efficient graph algorithms with better performance than alternatives.
The full paper verifies these results and shows that BYO achieves 1.06−4.44× speedup on
average compared to other frameworks (e.g., Ligra [69] and GraphBLAS [51, 19, 27, 28]).

Standardized graph-container evaluation. Furthermore, BYO addresses previous evalua-
tion issues due to different framework implementations by making sensible optimizations for

8GBBS is an iteration of Ligra with a richer interface and more algorithm implementations.
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Figure 12: Relationship between BYO framework, graph containers, and graph algorithms
(via GBBS).

graph-algorithm performance accessible to all containers that use BYO. For example, the authors
of the SSTGraph graph container implemented the Ligra framework on top of SSTGraph [78]
to compare with Aspen [34], which also implements Ligra. However, the Ligra implementation
in SSTGraph contains additional optimizations for certain algorithms that enable the overall
system to achieve better performance on certain workloads. Specifically, SSTGraph found that
one of these optimizations helped by 20% on Pagerank and 6% on Connected Components [78].
These optimizations are localized in the programming framework and could theoretically be
applied to any dynamic-graph container; by incorporating them, we believe that BYO is the first
system that can fairly and reliably isolate performance improvements to the graph container.

BYO API Description

The goal of BYO is to make it as easy as possible for a graph-container developer to use any
data structure in a high-performance and general graph programming framework. I will sum-
marize the “set” and “graph container” APIs that BYO exposes to connect with arbitrary graph
data structures as well as framework-level optimizations that have appeared in various places
throughout the literature that we have collected in BYO. The full paper contains further details
about the API components (including discussion of how updates are included in BYO’s API)
and BYO’s implementation.

Figure 12 illustrates the relationship between data structures, BYO, and GBBS components.
The GBBS framework uses the VertexSubset abstraction from Ligra [69] for maintaining the
active vertex set.

NeighborSet API description. A graph can be represented as a sequence of sets where each
set contains the edges incident to a single vertex, that is a neighbor set. Many graph representa-
tions, such as the adjacency list in Stinger [38], the tree of trees in Aspen [34] and CPAM [33]9,
directly implement this two-level structure.

BYO provides the NeighborSet API, a high-level description of the necessary functionality
for a single vertex neighbor set. The NeighborSet API enables easy parallelization over the
vertex set, since all of the neighbor sets are independent.

9The previous section referred to CPAM as C-PaC for clarity compared to CPMA. In this section, we will
use CPAM to refer to the library that implements PaC-trees.



nghs of 2

Managed by BYO

Implemented by developer

0 1 2
nghs of 0 …nghs of 1 nghs of 2

…

nghs of 0

NeighborSet API + inline edges

Vertex IDs

Pointers to 
edges

Neighbor 
Sets nghs of 0

0 1 2 …

…

nghs 
of 1 nghs of 2

Managed by BYO

Implemented by developer

NeighborSet API

Figure 13: Data structure and inline optimization using the set API.

Figure 13 illustrates the relationship between the vertex level (maintained by BYO) and
the set data structures (implemented by the developer). BYO abstracts away the details of
choosing a data structure for both the vertex sequence and neighbor sets and enables the user
to just implement the neighbor set. Currently, BYO implements the vertex sequence as an
std::vector for simplicity, but could theoretically use any set data structure.

We find that the minimal API necessary for a neighbor set data structure to implement the
GBBS operators which do not change the neighbor sets is to expose a size function and an
iteratorwhich supports sequentially iterating through the elements one by one, i.e., a forward
iterator. These are two basic functionalities are naturally expected from set implementations.
For example, the C++ standard template library (STL) [61, 50], a widely-used standard library
of basic utilities, includes both of these (among others).

More formally, the required functionality for algorithms for the NeighborSet API is as
follows:
• iterator or map(f): Apply the function f to all elements in the set. An iterator can be

used to implement map by simply iterating through all elements in the set and applying the
function f.
• size(): Return the number of elements in the set.

Advantages of the NeighborSet API The NeighborSet API is designed to make it as easy
as possible for a data-structure developer to integrate their container with BYO, as long as they
implement the basic contract specified in the STL container API. Notably, if a developer wants
to integrate a set library that implements size and iterator functionality with BYO, they
do not need to write any additional code. To improve ease of use, we implemented BYO to
automatically translate from the STL container API to the BYO API. That is, integrating a data
structure that implements the STL container API just requires importing it at the top of the test
driver and specifying its type as the graph container under test.

Furthermore, we incorporate the inline optimization from Terrace [63] into the vertex set
in BYO to benefit arbitrary data structures and enable faster systems overall. This optimization
stores a few (about 10) edges inline in the vertex level next to the pointer to the neighbor set for
each vertex. The goal is to avoid indirections for low-degree vertices. The idea was originally
introduced in Terrace but can be generally applied to any graph container with the sequence
of sets structure. Figure 13 illustrates the inline optimization in an arbitrary sequence of sets
graph representation. On average, we find that the inline optimization speeds up set containers
by 1.06× on average.



GBBS Vertex
Operator

B.Y.O. Lambda

Map Pass through provided function

Reduce auto value = identity
map([&](auto ...args) { value.combine(f(args...)) })

Count int cnt = 0
map([&](auto ...args) { cnt += f(args...) })

Degree int cnt = 0
map([&](auto ...args) { cnt += 1) })

getNeighbors Set ngh = {}
map([&](auto ...args) { ngh.add(args) })

Filter Set ngh = {}
map([&](auto ...args) { if (pred(args) ngh.add(args) })

Table 1: GBBS primitives implemented using just the map primitive.

GraphContainer API. Furthermore, BYO provide an alternative GraphContainer API to
connect BYO to graph data structures that do not represent the neighbor sets as separate in-
dependent data structures. For example, the classical Compressed Sparse Row (CSR) [72]
representation stores all of the neighbor sets contiguously in one array. Furthermore, some opti-
mized dynamic-graph containers like Terrace [63] and SSTGraph [78] collocate some neighbor
sets for locality. These graph data structures internally manage both the vertex and neighbor sets.

We find that the minimal API necessary for a data structure to support a diverse set of graph
algorithms via BYO is just map_neighbors and num_vertices:
• map_neighbors(i, f): Apply the function f to all neighbors of vertex i.
• num_vertices(): Return the number of vertices in the graph.

Advantages of the GraphContainer API The GraphContainer API enables cross-set opti-
mizations that cannot be expressed in the NeighborSet API at the cost of programming effort. For
example, in the classical CSR, the edges are stored contiguously in one array for locality rather
than in separate per-vertex arrays, which is not easily captured by the set of sets abstraction.
Another example is the hierarchical structure in Terrace [63], which stores some neighbor sets
contiguously in a dynamic array-like data structure. Additionally, SSTGraph [78] shares some
metadata between the different neighbor sets for space savings, which cannot be captured with
the independent sets abstraction. However, the GraphContainer API cannot access the general
inline optimization supported by the NeighborSet API.

Connecting BYO to GBBS BYO simplifies the list of original read-only GBBS neighbor-
hood operators such as map, reduce, count, etc. by implementing several of them with map. The
original GBBS specification required the data-structure developer to implement several neighbor-
hood operators. In contrast, BYO requires them to implement only one. Table 1 demonstrates
how to implement the original GBBS neighborhood operators using different map lambdas.

In addition to providing the translation layer from the GBBS vertex neighborhood operators,
the BYO implementation also modifies the implementation of some operators in GBBS because
they assume that the underlying graph is stored in CSR format. This is not inherent in the



high-level GBBS specification, but was a prevalent assumption in the codebase. Specifically,
several EdgeMap functions assumed that they could directly perform array access into the
container to access relevant parts of the graph, which does not hold for arbitrary data structures.

Finally, to further standardize the evaluation between graph containers, BYO includes several
framework-level optimizations that can benefit all systems, since they are independent of the con-
tainer. The paper contains the full details of these optimizations and their performance benefits.

Results
The full paper includes a cross-cutting evaluation of graph containers and frameworks along
several distinct axes. I will focus on the graph-container evaluation that BYO enables, but the
paper includes benchmarks regarding the BYO framework itself and its comparison to other
state-of-the-art frameworks such as Ligra and GraphBLAS. All experimtns were run on an Intel
machine with 64 physical cores (128 hyperthreads) and 1024 GiB of main memory.

Using BYO10, compare over 20 different containers in an apples-to-apples way on graph-
algorithm performance without external factors from the algorithm implementation such as the
specific algorithm for a problem or systems-level factors like the language and parallelization
method. The evaluation includes not only specialized dynamic-graph containers, but also
“off-the-shelf” data structures (e.g., those from the standard library) to determine how much
performance can be gained just by using simple existing data structure implementations.

The algorithms included in the evaluation cover a wide range of problems, including shortest-
path, connectivity, substructure, covering, and eigenvector problems. We refer the interested
reader to the GBBS paper for full details on the algorithms and their implementations [35].

The evaluation also measures the performance of dynamic-graph containers when perform-
ing batch edge insertions and deletions. BYO also integrates numerous off-the-shelf containers
(e.g., Abseil flat hash sets and B-trees), providing a more nuanced picture of dynamic graph
containers built using standard data structures that to the best of our knowledge is absent in prior
evaluations.

Summary. In terms of graph algorithm performance (Figure 14), our findings show that graph
data structures are very similar on average, but that developing specialized graph data struc-
tures is worthwhile because additional optimization effort can improve holistic performance
on more challenging instances, e.g., high-degree graphs. All of the data structures tested be-
sides the unoptimized std::set and std::unordered_set incur most about 1.5× slowdown
compared to CSR when averaging across all algorithms and graphs. Furthermore, the best
specialized container (CPAM with inline) is only about 1.1× faster than the best off-the-shelf
data structure (absl::btree_setwith inline) on average. However, the worst-case slowdown
for the absl::btree_set is 2.6×, while CPAM achieved a maximum slowdown of 1.9× over
CSR. These results suggest that specialized data structures can improve upon off-the-shelf data
structures on more difficult problem settings.

BYO cuts through combinatorial explosion in terms of programming effort to enable large-
scale comparisons of graph containers on a diverse suite of algorithms to provide a complete
view of how fast a graph container can support algorithms in a variety of cases.

In terms of batch inserts (Figure 15), we find that off-the-shelf structures exhibit a folklore
query-update tradeoff: the Abseil B-tree, which is best off-the-shelf structure for algorithms,

10The code is available at https://github.com/wheatman/BYO.

https://github.com/wheatman/BYO
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dynamic graphs.

experienced around a 3× slowdown on larger batch inserts compared to the Abseil flat hash set.
However, the hash set was worse on algorithms compared to the B-tree. However, specialized
containers can overcome the query-update tradeoff on the largest batches: the single PMA is
better on algorithms on average compared to the B-tree as well as on the largest batch size.

Comprehensive container evaluation. At a high level, the tested graph data structures are
very similar on average, but specialized data structures have an advantage over off-the-shelf
structures in terms of worst-case performance across problem instances. Table 2 reports the
average, 95th percentile, and maximum slowdown over CSR for each data structure across all
100 problem settings (10 algorithms × 10 graphs).



Container Slowdown over CSR Bytes per edge
Average 95% Max Min Average Max

NeighborSet API (Vector of...)

absl::btree_set 1.26 1.9 2.3
absl::btree_set (inline) 1.22 2 2.6
absl::flat_hash_set 1.40 2.3 3.4
absl::flat_hash_set (inline) 1.29 2.1 2.6
std::set 2.59 5.0 5.8
std::set (inline) 2.37 4.9 5.6
std::unordered_set 2.01 3.7 6.0
std::unordered_set (inline) 1.90 3.5 5.9
Aspen 1.22 2 2.5 5.7 12.0 53.4
Aspen (inline) 1.14 1.7 2.0 5.8 7.4 14.9
Compressed Aspen 1.44 2.1 2.6 3.4 5.0 12.1
Compressed Aspen (inline) 1.34 1.9 2.6 3.4 5.5 14.9
CPAM 1.16 1.4 1.5 4.1 4.9 9.0
CPAM (inline) 1.11 1.5 1.6 4.1 6.6 21.6
Compressed CPAM 1.37 1.7 1.9 3.4 4.5 8.9
Compressed CPAM (inline) 1.30 1.8 2.1 3.5 6.2 21.6
PMA 1.25 1.9 3.2 8.1 13.9 46.5
Compressed PMA 1.35 1.9 3.3 4.9 11.2 46.5
Tinyset 1.27 1.9 5.1 5.5 8.6 26.5
Vector 1.07 1.4 1.9 4.1 5.0 10.2

GraphContainer API

CSR 1.00 1.0 1.0 4.1 5.1 10.6
Compressed CSR 1.23 1.5 1.6 2.3 3.8 10.6
DHB 1.15 1.7 2.4
PMA 1.15 1.4 1.6 10.0 12.3 24.2
Compressed PMA 1.31 2.0 2.2 3.1 5.6 17.7
SSTGraph 1.25 1.5 2.4 4.0 6.4 19.9
Terrace 1.20 2.0 3.3 9.3 17.7 47.8

Table 2: Data structure algorithm performance and space usage. All data structures are
uncompressed unless otherwise specified. Each container’s time is normalized to CSR’s time
averaged over all 100 settings of 10 algorithms × 10 graphs. A number closer to 1 means
better performance (higher is worse). The 95% and max columns show the 95th percentile
and maximum slowdown over CSR across all algorithms and all graphs. We also show the
space usage of the different graph data structures in terms of bytes per edge.

On average, we find that the overall difference between the best off-the-shelf dynamic
structure and the best specialized dynamic structure is within about 1.1×. Specifically, the
Abseil [1] B-tree incurs 1.22× slowdown compared to CSR. Furthermore, we find that the best
specialized graph data structure on average is a vector of uncompressed PaC-trees [33] + inline,
which incurred 1.11× slowdown relative to CSR.

The average differences between specialized structures are much smaller than previously
reported in other papers because BYO standardizes the evaluation and makes optimizations



previously available in one system accessible to all data structures. Specifically, we find that the
specialized containers (PaC-trees [33], Terrace [63], DHB [75], CPMA [80], SSTGraph [78]
and Aspen [34]) incur between 1.11−1.44× slowdown on average relative to CSR.

These results do not invalidate previous evaluations because BYO enables direct compar-
isons of containers directly rather than overall systems. Previously, papers that introduced
containers were only able to compare their systems (both the container and framework) because
of the lack of a unified easy-to-use framework. Therefore, previously-reported performance
differences were the result of variations in the framework as well as the container.

Although the off-the-shelf and specialized data structures achieve similar performance on av-
erage, the specialized data structures have better overall performance when looking at the holistic
set of experiments. Figure 14 shows for how many experiment settings a given data structure
achieved within some slowdown relative to CSR. For example, Abseil’s B-tree with the inline
optimization achieved within 1.25× of CSR’s performance on 63 experiments, while PaC-trees
with the inline optimization achieved within 1.25× of CSR’s performance on 83 experiments.

We also measure the space usage of all containers which support getting their memory
usage in Table 2. We find the bytes per edge varies significantly between graphs even when the
container is fixed - by at least 2× and sometimes up to 10×. In all cases, the worst-case bytes per
edge is on the road graph due to its low degree. Finally, compressed data structures can reduce
the space usage by 2× compared their uncompressed counterparts.

Guidance for choosing graph containers. Table 3 shows the fastest container for each
combination of graph and algorithm tested. These results provide guidance for choosing among
containers for different graph and algorithm types. Please see the paper for details on the
algorithms and graphs.

Overall, we find that the optimized tree-based containers (CPAM and Aspen) achieve the
best performance most frequently on different problem settings. CPAM performs especially
well on the tested Erdos-Renyi (ER) graph [40] graph - it is the fastest on 7/10 algorithms. We
conjecture that its performance is due to the uniform degree distribution and relatively high
average degree in ER.

Several other containers exhibit strengths in specific algorithm or graph categories:
• The PMA is the fastest container on the Coloring algorithm for all graphs. Coloring is a

covering-type algorithm that requires iterating over the entire graph in any order, which the
PMA is well-suited due to being optimized for contiguous memory access.
• DHB achieves the best performance more often on large graphs. We conjecture that DHB is

well-suited to large graphs because it uses custom memory allocations that enable it to store
more data contiguously.
• Terrace has the best performance on some algorithms (Approximate Densest Subgraph

(ADS), Maximal Independent Set (MIS), and PageRank (PR)) when run on the RMAT graph
(RM). Terrace is optimized for skewed graphs, and RMAT is a synthetic skewed graph.
• On very sparse graphs, e.g., RD, data structures with fewer pointers and co-located memory

such as PMA, CPMA, and SSTGraph are the best choice due to the improved locality of these
data structures when the average degree of the graph is extremely low.
To summarize, CPAM and Aspen are solid choices for overall performance, but if a user

has a specific algorithm or graph class that they are optimizing for, the trends noted above can
help them select a different container.



RD LJ CO RM ER PR TW PA FS KR
BFS CPMA CPAM* Aspen* CPAM* CPAM* TinySet CPAM* Aspen* CPAM CPMA
BC absl::FHS* CPAM* Aspen* CPAM* CPAM* DHB Aspen* Aspen* Aspen* CPAM*
Spanner PMA CPAM* CPAM* Aspen* CPAM* Aspen* DHB Aspen* DHB DHB
LDD PMA CPAM* CPMA CPAM* CPAM* DHB CPMA CPAM* CPMA CPMA
CC absl::FHS* Aspen* Aspen Aspen Aspen Aspen Aspen DHB DHB DHB
ADS SSTGraph TinySet SSTGraph Terrace CPAM absl::btree PMA DHB DHB DHB
KCore C-CPAM* C-CPAM* CPAM SSTGraph SSTGraph TinySet CPAM CPAM* CPAM* Aspen*
Coloring PMA PMA PMA PMA PMA PMA PMA PMA PMA PMA(V)
MIS PMA CPAM* TinySet Terrace CPAM TinySet Aspen* CPAM* Aspen* Aspen*
PR DHB Aspen* Aspen Terrace CPAM* Aspen Aspen* TinySet PMA (V) DHB

Table 3: The fastest container for every graph × algorithm combination. The graphs are sorted
left to right by size (in number of edges). * next to a container denotes the NeighborSet API
version with the inline optimization. CPAM/C-CPAM refers to the uncompressed/compressed
version of CPAM, respectively. PMA(V) refers to the vector of PMAs using the NeighborSet
API, and PMA refers to the single PMA using the GraphContainer API.

Discussion

This section summarizes BYO, an easy-to-use, high-performance, and expressive graph-
algorithm framework. BYO enables apples-to-apples comparisons between dynamic-graph
containers by decoupling the graph containers from algorithm implementations. The BYO
interface is simple, enabling comprehensive comparisons of new containers on a diverse set of
applications with minimal programming effort.

The results demonstrate that the differences between graph containers are smaller than what
is commonly reported in papers introducing new graph containers. We attribute this discrepancy
to the fact that these papers often perform end-to-end comparisons between graph systems,
which vary both the framework and the container. Moreover, the results demonstrate that while
on average off-the-shelf data structures achieve highly competitive performance with specialized
data structures.

However, the results indicate two promising directions for graph-container developers for
optimizing specialized containers. First, the results demonstrate that off-the-shelf structures
leave significant performance on the table for certain algorithms/graphs. Designing specialized
containers for hard instances can mitigate worst-case performance. Second, specialized graph
containers can overcome the folklore query-update tradeoff with efficient parallelization of
batch updates.

5 Conclusion
Due to their ubiquity, dynamic graphs have attracted significant research attention towards
creating fast algorithms, frameworks, and data structures for processing them. Dynamic-
graph algorithms and data structures present an exciting opportunity for practical algorithm
engineering that will be required to scale them to large graphs.

This column focuses on developing and benchmarking dynamic-graph containers and their
associated systems on modern multicores, which are characterized by their large main memories,
many parallel threads, and steep cache hierarchies. Specifically, I discussed two directions:
• Developing dynamic-graph containers that support both fast algorithms and fast updates

without giving up performance in either direction. I used F-Graph, a container based on the
Packed Memory Array data structure, as a case study for how cache-optimized data structures



can overcome traditional performance tradeoffs.
• Comprehensive and fair benchmarking of dynamic-graph containers without confounding

factors from the overall dynamic-graph system, which includes both algorithm framework and
the container. I show how BYO, a high-performance graph-algorithm framework designed
for simplicity and ease of use, can standardize evaluations of graph containers and enable
developers to easily build expressive and fast dynamic-graph systems.

Remarks and future directions

I believe that the two concrete results I mentioned in the column are steps in the right direction,
but there is potential for the high-level ideas to play an even wider role in future development
and benchmarking of dynamic-graph systems.

The results in this column demonstrate the Packed Memory Array’s potential as a replace-
ment for dynamic trees, but the PMA is not yet comparable to trees in terms of functionality
and generality. For example, tree implementations often target more complex use cases such
as functional updates [34] and transactional updates [25]. Furthermore, trees are common in
other settings such as out-of-core and disk-based storage systems, but to my knowledge, there
is not yet a high-performance disk-based PMA implementation.

Furthermore, BYO takes the first step towards apples-to-apples comparisons of graph
containers, but is built on GBBS, which currently runs static graph algorithms, or algorithms
that must recompute the entire answer from scratch in the presence of changes to the graph.
There has been a great deal of work from the theory community on developing dynamic-graph
algorithms, or algorithms that maintain some intermediate state to take updates into account and
avoid full recomputation. I refer the interested reader to an excellent survey on the topic [44].
However, it is non-trivial to implement dynamic-graph algorithms that are actually faster than
static algorithms in practice due to parallelism and locality issues. Independently of the theory
community, the systems community has proposed many programming frameworks for dynamic
algorithms on graphs [23, 60, 49, 59, 68, 58, 65, 76, 57, 56, 2, 21, 48, 41]. However, these
framework implementations are also often tightly coupled with their underlying graph container,
so they suffer from the same issues of generality.

My main motivation for writing this column is to share my excitement for developing
dynamic-graph data structures and their associated systems. Although there have already been
many papers on this topic, I believe that it will continue to be an area for future development as
dynamic graphs continue to grow. I look forward to seeing progress in these exciting directions.
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