
The Algorithmics Column
by

Ioana O. Bercea and Thomas Erlebach

KTH, Stockholm, Sweden and Durham University, UK
bercea@kth.se and thomas.erlebach@durham.ac.uk

https://www.kth.se/profile/bercea?l=en
https://www.durham.ac.uk/staff/thomas-erlebach/
mailto:bercea@kth.se
mailto:thomas.erlebach@durham.ac.uk

Data CompressionMeets Automata Theory

Nicola Cotumaccio
University of Helsinki, Finland

nicola.cotumaccio@helsinki.fi

Abstract

I received my PhD in Computer Science on January 31, 2024, under a
Joint PhD agreement between Gran Sasso Science Institute (L’Aquila, Italy)
and Dalhousie University (Halifax, Canada). I was supervised by Travis
Gagie, Nicola Prezza and Catia Trubiani. My PhD thesis, Data Compression
Meets Automata Theory, was selected by the Italian Chapter of the EATCS
for the Best PhD Thesis Award.

The thesis introduces a new paradigm for studying regular languages, es-
tablishing a connection between classical results in automata theory, such as
the powerset construction, and the most important data structures for solv-
ing pattern matching queries on compressed strings, such as the Burrows-
Wheeler transform. The results and the open problems should be of interest
to both the algorithmic community and the formal language theory commu-
nity.

In 2020, Alanko et al. introduced Wheeler automata [3]. Intuitively, a nonde-
terministic finite automaton (NFA) is Wheeler if there exists a total order on the
set of all nodes that is consistent with the co-lexicographic order on the strings
reaching each node (see Figure 1). We say that a regular language is Wheeler if it
is recognized by some Wheeler NFA. Wheeler automata were initially motivated
by classical results on compressed data structures [18] but, as a matter of fact, the
class of Wheeler languages is a surprisingly rich and stable subclass of regular lan-
guages. Basic results in automata theory show that, if a language is recognized by
a nondeterministic finite automaton (NFA), then the language is also recognized
by a deterministic finite automaton (DFA), and up to isomorphism there exists
a unique (state)-minimal DFA recognizing the language. Moreover, regular lan-
guages admit an algebraic characterization in terms of equivalence relations, and
the minimal automaton can be described through the Myhill-Nerode equivalence.
Analogous results hold for Wheeler languages: determinism and non-determinism
have the same expressive power, there exists a unique minimal Wheeler DFA, and
there exists a characterization in terms of convex equivalence relations [4].

nicola.cotumaccio@helsinki.fi

2

5 6 7 8 9

3 4

10 11 12 13 14

15 16 17 18 19

1start

a a a a a

b b b c c

d d e e e

f

g h
i

l

a

Figure 1: A Wheeler automaton. States are numbered according to their positions
in the corresponding total order. Node 2 is reached by the string f dba, node 3
is reached by the string gdba, we have 2 < 3 and consistently the string f dba is
co-lexicographically smaller than gdba.

Most automata are not Wheeler: every Wheeler language must be star-free.
In [13], we show how to extend the idea behind Wheeler automata to arbitrary
automata and arbitrary regular languages. The key idea is that we should not use
a total order, but a partial order (see Figure 2): in this way, it is possible to capture
every automaton. We can measure how far a partial order is from being a total
order by the notion of width: a partial order has width p is it can be decomposed
into p total orders, but not into p − 1 total orders. Dilworth’s theorem [14] shows
that the width of a partial order is equal to the size of a largest set of pairwise
incomparable elements. Wheeler automata correspond to the case p = 1.

The parameter p is a complexity parameter with multiple interpretations and
applications.

• First, p is a nondeterminism parameter. The powerset construction [23] is
a classical construction that converts an NFA into an equivalent DFA (see
Figure 3). If the original NFA has n states, in the worst case the equivalent
DFA can have up to 2n − 1 states. This exponential blow-up is unavoidable:
there exist regular languages for which, if N is the number of states of a
state-minimal NFA recognizing the language and D is the number of states
of the minimal DFA for the language, then D = 2N − 1 [20]. In the paper,
we show that, in fact, the powerset construction is exponential only in p: if
we start from an NFA with n states, then the equivalent DFA has at most
2p(n− p+1)−1 states. In the worst case, we have p = n and we retrieve the
bound 2n − 1 but, for example, a Wheeler NFA (p = 1) with n states can be
converted into an equivalent DFA with at most 2n − 1 states. This implies
that several classical algorithmic problems that are computationally hard on

0start 2

1

3

4

5

a

a

b

b

b

b

b,c

0

1

2

3

4

5

0

1

3

2

5 4

Figure 2: An automaton with the Hasse diagrams of two partial orders (on the set
of all states), both respecting the co-lexicographic order on the strings reaching
each state. Note that the first partial order is, in fact, a total order.

NFAs but easy on DFA are fixed-parameter tractable with respect to p. For
example, the problem of deciding whether two NFAs recognize the same
languages (equivalence problem) is PSPACE-complete [25], but the same
problem can be solved efficiently if the input automata are DFAs. This im-
plies that the equivalence problem is fixed-parameter tractable with respect
to p, because one can convert the input NFAs into equivalent DFAs by the
powerset construction and then test the resulting DFAs for equivalence.

• Second, p is a compression parameter. An NFA with n states and e edges
on an alphabet of size σ can be stored by using only e(2 log p + logσ)(1 +
o(1))+O(e) bits. This is surprising because at the very least we need e logσ
bits to store the edge labels, so with a small overhead we can also store
the topology of the automaton. This result extends the Burrows-Wheeler
transform [6] from strings to arbitrary automata.

• Third, p is an algorithmic parameter. By only querying our compressed
representation, we can solve pattern matching on an NFA (including decid-
ing whether a string in accepted by the NFA) in O(mp2 log log(pσ)) time,
where m is the length of the pattern. Our algorithm matches and parameter-
izes well-known conditional lower bounds on the problem [15]. This result
extends the FM-index [17] from strings to arbitrary automata.

Since we can capture all automata, we can also capture all regular languages.
In particular, we can define the deterministic width of a regular language as the
minimum width of some DFA that recognizes the language. In our journal exten-
sion [8], we show that the width of a regular language is related to the notion of
entanglement: intuitively, some states of an automaton (and in particular of the
minimal automaton) are entangled if the strings reaching these states are inher-
ently incomparable in every DFA recognizing the language. Based on the notion
of entanglement, we define a new canonical automaton for each regular language,

the Hasse automaton of the language, and we show that the problem of computing
the deterministic width of a language is decidable. The Hasse automaton captures
the propensity of a regular language to be sorted.

The journal extension [8] contains the main ideas of the thesis. A short initial
section presents the new paradigm; then, the readers can skip the automata theory
results or the data compression results, based on their interests and preferences.

Computing p is NP-hard. In [10], I show that the hardness can be overcome
by building a quotient automaton obtained by collapsing some states in the orig-
inal automaton. The quotient automaton and the original automaton recognize
the same language, and some correspondence theorems ensure that solving pat-
tern matching queries on the original automaton is equivalent to solving pattern
matching queries on the quotient automaton. This paper received the Best Student
Paper Award at the 2022 Data Compression Conference (DCC).

In the deterministic case, the problem of computing p can be interpreted as
a highly non-trivial extension of the problem of computing the suffix array of a
string, a well-studied problems in string processing (see [21] for a survey). In the
original paper [13] we gave an O(m2) algorithm, where m is the number of edges.
In [11], I improve this running time to O(m+ n2), where m is the number of edges
and n is the number of states, by proposing a recursive algorithm based on induced
sorting (a powerful and elegant algorithmic technique for sorting the suffixes of
a string). This paper received the Best Student Paper Award at the 2023 Interna-
tional Symposium on Algorithms and Computation (ISAAC). Interestingly, it is
an open problem to determine whether it is possible to achieve O(m) time. There
exists an alternative algorithm based on Paige and Tarjan’s partition refinement
algorithm [22], and the O(m + n2) algorithm suggests that induced sorting may
outperfom approaches based on partition refinement. This could lead to unex-
pected consequences, because the most efficient algorithm for DFA minimization
is still Hopcroft’s algorithm [19], which is a partition refinement algorithm.

The same paradigm can be extended to more general computation models. In
his monumental work on automata theory [16], Eilenberg proposed a natural gen-
eralization of NFAs where edges can be labeled not only with characters but with
finite strings, the so-called generalized automata. String-labeled graphs appear in
some classical data structures (such as suffix trees) and in the emerging field of
pangenomics. In [12], I show that our new paradigm can be extended to gener-
alized automata, and I describe a full Myhill-Nerode theorem, the first structural
result for the class of generalized automata, which includes a sound notion of
minimal DFA for generalized automata.

As mentioned earlier, Wheeler languages always admit a minimal Wheeler
automata. A Wheeler DFA can be minimized in O(n log n) time by adapting
Hopcroft’s algorithm for DFA minimization. In [2], we show that, in the Wheeler
case, we can do better: it is possible to achieve linear time minimization by ex-

1start 2 3 4

a, b

b a a, b

1start 1, 2

1, 4 1, 3 1, 2, 4

a

b

b

aa b

a b

a

b

Figure 3: An NFA (left) and the equivalent DFA obtained by the powerset con-
struction (right). Each state of the DFA corresponds to a nonempty set of states of
the original NFA.

ploiting the co-lexicographic structure of a Wheeler DFA.
If we want to solve more complicated pattern matching queries on graphs and

automata (for example, approximate pattern matching queries) we need a more
powerful data structure. In the string setting, the most versatile data structure is
the suffix tree [26], so we should extend suffix tree functionality to automata. In
a chain of papers [7, 9, 1], we provide some partial results in this direction by
showing how to extend the longest common prefix array to Wheeler DFAs. The
longest common prefix array is a key data structure for simulating a traversal of a
suffix tree [5].

In the last chapter of my thesis, I discuss some additional open problems. We
outlined how Wheeler languages enjoy several properties, but two characteriza-
tions are missing: one in terms of regular expressions, and one through logic.
Wheeler languages are star-free, so they capture a fragment of first-order logic: to
obtain a logical characterization it may be necessary to go through difficult results
such as the Schützenberger theorem for aperiodic monoids [24]. At the same time,
the thesis introduces a very natural hierarchy of regular languages parameterized
by p, so by exploring these characterizations and extending them to each level of
the hierarchy we may shed new light on famous important open problems, such
as the generalized star-height problem.

References
[1] Jarno N. Alanko, Davide Cenzato, Nicola Cotumaccio, Sung-Hwan Kim,

Giovanni Manzini, and Nicola Prezza. Computing the LCP Array of a La-
beled Graph. In Shunsuke Inenaga and Simon J. Puglisi, editors, 35th Annual
Symposium on Combinatorial Pattern Matching (CPM 2024), volume 296 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:15,

Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik.

[2] Jarno Alanko, Nicola Cotumaccio, and Nicola Prezza. Linear-time minimiza-
tion of Wheeler DFAs. In 2022 Data Compression Conference (DCC), pages
53–62, 2022.

[3] Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza.
Regular languages meet prefix sorting. In Proceedings of the Thirty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, page
911–930, USA, 2020. Society for Industrial and Applied Mathematics.

[4] Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza.
Wheeler languages. Information and Computation, 281:104820, 2021.

[5] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replac-
ing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms,
2(1):53–86, 2004. The 9th International Symposium on String Processing
and Information Retrieval.

[6] Michael Burrows and David J Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Corporation,
1994.

[7] Alessio Conte, Nicola Cotumaccio, Travis Gagie, Giovanni Manzini, Nicola
Prezza, and Marinella Sciortino. Computing matching statistics on Wheeler
DFAs. In 2023 Data Compression Conference (DCC), pages 150–159, 2023.

[8] Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola
Prezza. Co-lexicographically ordering automata and regular languages-part
i. Journal of the ACM, 70(4):1–73, 2023.

[9] Nicola Cotumaccio, Travis Gagie, Dominik Köppl, and Nicola Prezza.
Space-time trade-offs for the LCP array of Wheeler DFAs. In Franco Maria
Nardini, Nadia Pisanti, and Rossano Venturini, editors, String Processing
and Information Retrieval, pages 143–156, Cham, 2023. Springer Nature
Switzerland.

[10] Nicola Cotumaccio. Graphs can be succinctly indexed for pattern matching
in O(|E|2+ |V |5/2) time. In 2022 Data Compression Conference (DCC), pages
272–281, 2022.

[11] Nicola Cotumaccio. Prefix Sorting DFAs: A Recursive Algorithm. In Satoru
Iwata and Naonori Kakimura, editors, 34th International Symposium on Al-
gorithms and Computation (ISAAC 2023), volume 283 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 22:1–22:15, Dagstuhl, Ger-
many, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[12] Nicola Cotumaccio. A Myhill-Nerode Theorem for Generalized Automata,
with Applications to Pattern Matching and Compression. In Olaf Beyers-
dorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Loksh-
tanov, editors, 41st International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2024), volume 289 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 26:1–26:19, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[13] Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite
automata. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2585–2599. SIAM, 2021.

[14] RP Dilworth. A decomposition theorem for partially ordered sets. The Annals
of Mathematics, 51(1):161, 1950.

[15] Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu.
On the Complexity of String Matching for Graphs. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 55:1–55:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[16] Samuel Eilenberg. Automata, Languages, and Machines. Academic Press,
Inc., USA, 1974.

[17] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM,
52(4):552–581, July 2005.

[18] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A frame-
work for BWT-based data structures. Theoretical Computer Science, 698:67–
78, 2017. Algorithms, Strings and Theoretical Approaches in the Big Data
Era (In Honor of the 60th Birthday of Professor Raffaele Giancarlo).

[19] John Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. In Theory of machines and computations, pages 189–196. Elsevier,
1971.

[20] F.R. Moore. On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic, and two-way finite automata. IEEE
Transactions on Computers, C-20(10):1211–1214, 1971.

[21] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix
array construction algorithms. ACM Comput. Surv., 39(2):4–es, July 2007.

[22] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–989, 1987.

[23] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

[24] M.P. Schützenberger. On finite monoids having only trivial subgroups. In-
formation and Control, 8(2):190–194, 1965.

[25] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time(preliminary report). In Proceedings of the Fifth Annual ACM Sympo-
sium on Theory of Computing, STOC ’73, page 1–9, New York, NY, USA,
1973. Association for Computing Machinery.

[26] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Sympo-
sium on Switching and Automata Theory (swat 1973), pages 1–11. IEEE,
1973.

