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Computer Science Institute, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

https://www.mff.cuni.cz/en/iuuk
https://www.mff.cuni.cz/en
koucky@iuuk.mff.cuni.cz
https://iuuk.mff.cuni.cz/~koucky/


Range Avoidance and the Complexity of
Explicit Constructions

Oliver Korten
Department of Computer Science

Columbia University, New York City
oliver.korten@columbia.edu

Abstract

A recent line of work has investigated the complexity of explicit con-
struction problems through the study of a search problem known as Range
Avoidance: given as input a boolean circuit C : {0, 1}n → {0, 1}n+1, find an
element y ∈ {0, 1}n+1 outside of its range. Analysis of this search problem
and its variants has lead to several exciting new results in derandomization
and circuit complexity. In this survey we give an overview of this nascent
research direction and its connections to some old and fundamental questions
in complexity theory.

1 Introduction

1.1 Motivation: Explicit Constructions
Throughout combinatorics and computer science, a fundamental tool used to
demonstrate the existence of interesting combinatorial objects is the probabilistic
method. Rather than constructing an explicit example of the desired object, a
random distribution of objects is chosen, and the probability of the desired object
arising from the distribution is shown to be strictly positive. The first appearance
of this argument was in a classical paper of Erdős who used it to establish the
existence of so-called Ramsey graphs: n vertex undirected graphs whose largest
clique and largest independent set each have size at most 2 log n [15]. A few years
later, an essentially identical argument was used by Shannon [42] to demonstrate
the existence of functions f : {0, 1}n → {0, 1} requiring boolean circuits of size
≥ 2n/n. In each case, the probabilistic argument gives no indication as to a
particular example of the object in question, and a signficant body of research over
the past eight decades has been devoted to matching these nonconstructive bounds
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with explicit arguments. Similar phenomenon have become ubiquitous throughout
combinatorics and computer science, whereby a nonconstructive argument proving
the existence of an interesting class of object has spawned a deep line of work
dedicated to producing a concrete example of one such object. In some fortunate
cases, such as Ramsey graphs, error correcting codes, and expanders, decades of
hard work eventually lead to optimal or near-optimal solutions. In many other
cases no significant progress has been made to date.

The pursuit of explicit constructions in place of nonconstructive arguments
has several motivations, which may be divided into roughly two classes: infor-
mal/philosophical and formal/computational. The informal motivation can be
summarized by a maxim asserting that we do not fully understand a concept until
we can produce an example. When we have some combinatorial property, the
mere existence of objects satisfying that property does not give us any deeper
information about why a certain object achieves the property. If we succeed in the
quest of finding an explicit object, and have a mathematical proof that this object
in particular has the relevant property, this proof will usually contain within it a
furtherance of our general understanding of the concept in question.

This informal motivation utilizes a rather vague definition of the term “explicit.”
In this framework, we would call an object, such as a Ramsey graph G ⊆

(
[n]
2

)
,

“explicit” provided we can present it by a comprehensible definition from which
we can extract and compute various other properties of the object by direct math-
ematical argument. The class of formal/computational motivations for studying
explicit constructions centers itself on a more concrete definition of the notion
of “explicitness:” in this context we will say that an object is explicit if it can be
produced by an efficient algorithm. In the example of a Ramsey graph G ⊆

(
[n]
2

)
,

we might say that it is explicit if there is a poly(n) time algorithm which outputs its
adjacency matrix given n; embedded in this kind of definition is the necessity of
reserving the notion of explicitness for sequences of objects rather than individuals.

The motivations for the study of computationally explicit constructions can be
further subdivided into two categories, which turn out to be intimately connected:
derandomization and computational lower bounds. Derandomization is a field
dedicated to the study of when randomized algorithms can be replaced by efficient
deterministic algorithms posessing similar behavior. At a high level, the connection
to explicit constructions may be viewed as follows. Say we have a randomized
algorithmA that flips n random coins, which we hope to simulate deterministically.
We may think ofA(r) as a deterministic algorithm which takes an n-bit string r,
and has some desirable behavior with high probability when r is chosen uniformly.
Peering into the proof ofA’s correctness, it is often possible to isolate a particular
pseudorandom property of n-bit strings, call it Π ⊆ {0, 1}n, so that a random string r
has the property Π with high probability, and whenever r ∈ Π,A(r) has the correct
behavior. Hence, if we could somehow deterministically construct a fixed string



r ∈ {0, 1}n which has the necessary property Π, then we could reap the benefits of
our randomized algorithm while using this fixed string in place of true randomness.
The problem of constructing strings with property Π is then the relevant explicit
construction problem.

In the case of computational lower bounds, the connection to explicit con-
structions is most direct. A fundamental problem in complexity theory is to
show separations of the form A ⊈ C where A is a uniform complexity class
such as NP,PSPACE,EXP, and C is a nonuniform class of circuits, such as
AC0,TC0,P/poly. By a counting argument, it is usually straightforward to show
that there exists boolean functions f : {0, 1}n → {0, 1} which are hard for the class
C. We may then study the explicit construction problem of producing an example
of such a function f ; if the construction itself has bounded uniform complexity in
some classA, then this implies by definition thatA ⊈ C. While this connection
may sound rather tautological, the study of computational lower bounds through
the lens of explicit construction has proved quite useful, particularly in the case
that the uniform classesA is at least as large as EXP.

1.2 The “Right” Complexity Class for Explicit Constructions

The main topic of this survey is the Range Avoidance problem: given a boolean
circuit C : {0, 1}n → {0, 1}m with m > n, find a string y ∈ {0, 1}n+1 outside the
range of C. The primary motivation for studying Range Avoidance stems from its
ability to capture the computational complexity of the kinds of explicit construction
problems discussed in the last section [29]. This connection is based on the simple
(and well-known) observation that most probabilistic existence arguments can be
strengthened to encoding arguments: to show that most objects have a desired
property, we show how any “bad object” failing to satisfy the property can be coded
by description of nontrivial length. In an information theoretic sense this claim
has no content: obviously every set of size 2k can have its elements coded by k-bit
strings. However, we shall see that if an encoding can be defined for which the
decoder has an efficient algorithm, this will yield a reduction to Range Avoidance.

It is easiest to work through an example, and perhaps the simplest is the case
of Ramsey graphs mentioned above. We start with the standard probabilistic
argument which shows the existence of a k-Ramsey graph on n vertices (no clique
or independent set of size ≥ k) whenever k >> log n. Choose G ∼ {0, 1}(

n
2)

uniformly at random. For each set V ⊆ [n] of size k, the probability that Gu,v = 1
for all u, v ∈ V is 2−(

k
2); a symmetric argument gives the same bound in the case

Gu,v = 0. Now, taking a union bound over all choices of V and the choice of whether
V is a clique or an independent set, the probability any clique or independent set



exists is at most

2 ·
(
n
k

)
· 2−(

k
2) ≤ 21+k log n−(k

2)

Hence setting k ≥ (2 + o(1)) · log n, this probability is strictly below 1 for n
sufficiently large.

Now, say that we had a graph G and a clique or independent set V of size k in
G. Using the exact same analysis, we can form a concise encoding of G as follows:

1. 1 bit indicating whether V is a clique or independent set.

2. k log n bits describing the set V as a list of vertices.

3.
(

n
2

)
−

(
k
2

)
bits describing G on all edges {u, v} with {u, v} ⊈ V .

It is clear that from this description we could uniquely decode the graph G in
polynomial time. The total number of bits is 1 + k log n +

(
n
2

)
−

(
k
2

)
, which is strictly

less than
(

n
2

)
provided k ≥ (2 + o(1)) log n. Hence if we define

C : {0, 1}(
n
2)+1+k log n−(k

2) → {0, 1}(
n
2)

as the function which takes such a concise graph description and outputs the graph
G being described, we see that any graph which fails to be k-Ramsey will lie in
the range of C; hence any G < range(C) is a solution to our explicit construction
problem. Since C is computable in poly(n) time, we can efficiently construct a
boolean circuit computing C in time poly(n) given n. Since the number of input bits
of C is strictly less then the number of outputs, C is a valid instance of the Avoid
problem and we have succeeded in reducing our explicit construction problem to
Range Avoidance.

1.3 Road Map
Since its introduction in [28] and its investigation in connection to explicit con-
struction problems in [29], Range Avoidance has received considerable attention
in the past few years [9–11,18,21,23,30,31,35,41,43]. At a very high level, some
of the key takeaways from this line of work are:

1. Essentially all interesting and unsolved explicit construction problems found
throughout theoretical computer science can be reduced in polynomial time
to Avoid using a small toolkit of reduction techniques.

2. Several important explicit construction problems actually reduce to a special
case of Avoid in which the input circuit C : {0, 1}n → {0, 1}m has a special



form. In other cases, nontrivial algorithms for special cases of Avoid have
been found unconditionally. Unfortunately, the known results of this form
do not yet “match up” to generate new explicit constructions.

3. There are nontrivial conditional and unconditional upper bounds for Avoid
inside of the polynomial hierarchy, one of which has lead to a recent break-
through circuit lower bound.

This survey will attempt to cover the current state of knowledge surrounding this
intriguing search problem, and some of its broader implications in complexity
theory. The content of this article is laid out as follows. In Section 2 we describe
the basic formulation of explicit construction problems, the connection between
explicit constructions and circuit lower bounds, and make some preliminary ob-
servations about the complexity of Avoid. In Section 3 we survey the main high
level techniques used to reduce various explicit construction problems to Avoid. In
Section 4 we discuss reductions between different variants of the Avoid problem.
In Section 5 we discuss some more involved upper bounds for Range Avoidance,
some of which have important implications in circuit complexity. In Section 6
we cover some results indicating the hardness of Avoid, both in the white-box
model (cryptographic hardness) and in the black box model (oracle separations).
In Section 7 we discuss work on an easier variant of Avoid lying in TFNP called
Lossy Code. Finally in Section 8 we present some important open problems.

1.4 Background– Bounded Arithmetic
The investigations discussed in this survey are deeply connected to, and in some
cases directly inspired by, important work in the field of Bounded Arithmetic.
Bounded Arithmetic studies the strength of subtheories of Peano Arithmetic whose
induction principle is restricted to formulas of bounded computational complexity;
for formal definitions and a comprehensive introduction to the area see [32]. An
important early question in the field was whether the theory I∆0 could prove the
existence of infinitely many primes; in complexity-theoretic terminology, we may
think of I∆0 as the fragment of Peano Arithmetic with induction for formulas
decidable in the linear time hierarchy:

LH =
⋃
i,c∈N

Σi-Time[c · n]

To resolve this question, [39] took the following approach: first isolate an abstract
combinatorial principle which suffices to prove the existence of infinitely many
primes in I∆0, then give an I∆0 proof of this principle1. The combinatorial principle

1In fact they could only prove this principle in a mild extension of I∆0 now known as T2.



used in [39] was the weak pigeonhole principle, which states that no formula in
the language of I∆0 can define an injective map 2n+1 7→ 2n; in a theory as strong
as I∆0 this is equivalent to the statement that no formula defines a surjective map
2n 7→ 2n+1. This work was influential in at least two respects. First, the technique
used to prove the weak pigeonhole principle in I∆0 based on repeated composition
of a supposed surjection 2n 7→ 2n+1 has been applied repeatedly in later work, as
discussed in Section 5.1. Second, the work of [39] highlighted the importance
of the weak pigeonhole principle as a key lemma from which highly nontrivial
results in number theory and combinatorics could be derived via the use of counting
arguments.

This latter direction was taken to its logical extreme in the highly influential
thesis of Jeřábek [25]. In this work, Jeřábek showed that a theory of bounded
arithmetic possessing induction for polynomial time computable predicates together
with the dual weak pigeonhole principle for polynomial time functions could
formalize a wide array of difficult complexity theoretic arguments that utilize
randomness and probability. This variant of the pigeonhole principle essentially
asserts that the problem Avoid is a total search problem: any instance C : {0, 1}n →
{0, 1}n+1 of Avoid defined by a boolean circuit must have a solution. In particular,
Jeřábek was able to show this theory could define and analyze many key properties
of randomized algorithms. Jeřábek also showed that the dual weak pigeonhole
principle defining his theory could be replaced by a principle asserting the existence
of boolean functions f : {0, 1}n → {0, 1} of high circuit complexity; this result
plays an important role in the study of Avoid, and was used in [29] to characterize
the complexity of Avoid in terms of a computational hardness assumption; this is
discussed further in Section 5.2.

2 Preliminaries
In this section we introduce basic definitions related to explicit construction prob-
lems and Avoid.

2.1 Formalizing Explicit Construction
We start with a formal definition of an explicit construction problem:

Definition 1. An explicit construction problem is defined by a language Π ⊆ {0, 1}∗.
We use Πn to denote Π ∩ {0, 1}n. The explicit construction problem ECΠ associated
to Π is: given 1n, output x ∈ Πn (or determine that none exist).

We say that Π is total if Πn , ∅ for all n; we say that it is dense if there is a
fixed c so that |Πn|/2n ≥ 1/nc for all n.



We will sometimes abuse notation and refer to Π directly as both a language
and its associated explicit construction problem. In all cases of interest, Π is total,
since an explicit construction problem only presents itself once the question of
existence has already been settled. The reason for the terminology of “totality” is
that in such cases ECΠ is a total search problem: every instance has a solution. We
define the input to the search problem as being encoded in unary (i.e. 1n) so that
the complexity of algorithms solving it is measured as a function of n rather than
log n: ideally, we seek algorithms with running time poly(n).

As mentioned in the introduction, essentially all of the major examples of
unsolved explicit construction problems are dense. The density of solutions imme-
diately implies the existence of a nontrivial randomized algorithm for the search
problem:

Lemma 1. If Π is dense, then ECΠ is in FZPPΠ; in other words there is a random-
ized algorithm using a Π-membership oracle which outputs a correct answer to
ECΠ with probability 1, and has polynomial runtime in expectation.

Proof. Sample a uniform string x ∼ {0, 1}n. Use a Π membership oracle to test if
x ∈ Πn; if the test passes output x, else repeat. □

This basic upper bound leads us to the first conditional derandomization result
for general dense explicit construction problems, based on a classical and powerful
result in derandomization:

Theorem 1 ( [24, 33, 37]). Assume that there is a language L computable in time
2O(n) with a Π oracle, such that L requires Π-oracle boolean circuits of size 2Ω(n).
Then FZPPΠ ⊆ FPΠ. Consequently, under the same assumption there is an FPΠ

algorithm for ECΠ whenever Π is dense.

For this reason, if the property Π is testable in polynomial time, then ECΠ has
a deterministic polynomial time algorithm under plausible assumptions; if it is
testable with an NP-oracle, then ECΠ is solvable in FPNP under similar assump-
tions.

There is one additional result, not covered by the general hardness/randomness
connection, that gives an unconditional and highly nontrivial upper bound for dense
explicit construction problems recognizable in P:

Theorem 2 ( [13]). If Π ∈ P, then ECΠ has a polynomial time pseudodeterministic
algorithm that works infinitely often: there is a sequence Y = (xn ∈ Πn)n∈N and a
polynomial time randomized algorithmA with the following property: for infinitely
many n,A(1n) outputs xn with probability 2

3 over its internal randomness.



Most of the important unsolved explicit construction problems are not recog-
nizable in polynomial time, and hence not covered by the above result; as we shall
see, the class of explicit construction problems primarily investigated in this work
are only recognizable in the larger class coNP. The primary exception to this
is the problem of constructing prime numbers: given 1n, output a prime p > 2n.
Testing membership in the primes lies in P by [3], and the primes have density

1
O(n) in the range [2n, 2n+1] by the prime number theorem; hence the above result
gives a polynomial time pseudodeterministic algorithm for this important explicit
construction problem.

2.2 Circuit Lower Bounds as Explicit Construction Problems

Although the ultimate goal of circuit complexity is to obtain superpolynomial
lower bounds for functions in NP, it remains a fundamental and difficult open
problem to accomplish this even for much larger complexity classes such as E and
ENP, which denote the sets of languages decidable by Turing machines running
in time 2O(n) = poly(2n) (respectively, with an NP-oracle). This problem came to
more prominence after the classical work of Nisan, Wigderson and Impagliazzo
mentioned above, who showed that if E (resp. ENP) contains a language requiring
circuits of size 2Ω(n) for sufficiently large n, then BPP ⊆ P (resp. BPP ⊆ PNP).

An important observation is that for classes running in time 2O(n), deciding a
language L on one input of length n has essentially the same cost as deciding all
inputs of length n and printing out the entire truth table L ∩ {0, 1}n. In particular:

Observation 1. The following are equivalent for a language L ⊆ {0, 1}∗:

1. L ∈ E (resp. ENP)

2. There is a polynomial time algorithm (resp. with an NP-oracle) which, given
12n

, outputs the truth table of L ∩ {0, 1}n.

As an immediate consequence we have:

Corollary 1. The following are equivalent:

1. There is a language in E (resp. ENP) which requires circuits of size s(n) for
all n.

2. There is a polynomial time algorithm (resp. with an NP-oracle) for the
following explicit construction problem: given 12n

, output the truth table of
a function f : {0, 1}n → {0, 1} requiring circuits of size ≥ s(n).



Hence the complexity of explicit construction problems involving the produc-
tion of hard boolean functions precisely captures the truth of corresponding circuit
lower bounds. In this terminology, the main theorem of [24] can be rephrased as
follows:

Theorem 3 ( [24]). Let ϵ > 0 be any fixed constant. Every language in BPP is
polynomial time reducible to the following explicit construction problem: given
12n

, output the truth table of a function f : {0, 1}n → {0, 1} with circuit complexity
≥ 2ϵn.

In other words, the explicit construction problem of producing hard truth tables
is at least as hard as the simulation of polynomial time randomized algorithms.

2.3 Range Avoidance: Definition and Variants
We start by recalling the formal definition of Avoid:

Definition 2 ( [28]). Range avoidance, denoted formally as Avoid, is the following
search problem: given a boolean circuit C : {0, 1}n → {0, 1}m with m > n, output a
string y ∈ {0, 1}m such that y < range(C).

This problem was first defined in [28] and investigated more comprehensively
in [29]; in both of these works it went by the name Empty, however since the
work of [41] the name “range avoidance” has become more standard. In [28, 29],
the name “APEPP” is used to describe the class of search problems polynomial
time reducible to Avoid; again this terminology has mostly fallen out of use in
subsequent work on the topic and we will not use it here.

We can make the following basic observations about the complexity of this
search problem:

Lemma 2.

1. Avoid is a total search problem – every instance has a solution.

2. A candidate solution y ∈ {0, 1}m can be verified for correctness in coNP.

3. Avoid is solvable in FZPPNP.

Proof.

1. This follows from the pigeonhole principle since m < n implies |{0, 1}n| <
|{0, 1}n|.

2. To test that y < range(C) it suffices to verify that for all x ∈ {0, 1}n, we have
C(x) , y; observe that the condition C(x) , y is checkable in polynomial
time since C is a boolean circuit.



3. Sample x ∼ {0, 1}m uniformly; use an NP-oracle to test if y ∈ range(C).
Repeat until a solution is found.

□

An important observation is that the above FZPPNP algorithm does not favor
any one solution over another: on a given instance C, it outputs each element of
{0, 1}m \ range(C) with equal probability. In Section 5.3 we will see that there is an
alternative randomized NP-oracle algorithm for Avoid which has the much stronger
property that the set of possible solutions output has size exactly one.

Conditions (1) and (2) place Avoid in the class TFΣP
2 originally defined in [28];

indeed these two conditions may be taken as a definition of TFΣP
2 . The class TFΣP

2
is rather new and largely unexplored; for a more in-depth coverage of the problems
therein see [28, 31].

The last point in the above lemma, together with the general conditional deran-
domization result from Section 2.1, gives us the following conditional derandom-
ization result for Avoid:

Corollary 2. If there is a language in ENP which requires NP-oracle circuits of
size 2Ω(n), then Avoid is solvable in FPNP.

In Section 5 we will see that this theorem can be strengthened so that the circuits
in question are oracle-free, and with this condition it becomes an equivalence. For
now the important takeaway is that conventional complexity-theoretic wisdom says
that the true upper bound for Avoid should be FPNP; in Section 6 we will see some
evidence that a better upper bound, for example Avoid ∈ FP, is unlikely to hold.

2.3.1 Parameters

There are two main parameters through which we may restrict the problem Avoid –
as we shall see later, the Avoid problem already becomes interesting in some highly
restricted settings of these parameters. If our goal is to eventually obtain better
Avoid algorithms in general, it is thus natural to study these weaker instances as a
starting point.

Stretch: The stretch of an avoid instance refers to the relation between the
number of output bits m and input bits n of the Avoid instance C. By definition
we require m > n, however the problem becomes potentially easier when m > 2n
or m > n2. In some cases it is relevant to study the ratio m

n , and in other cases the
difference m − n. We will not fix one of these as the formal definition of a stretch
parameter; instead we will simply say that an avoid instance has “stretch n 7→ m"
if it is of the form C : {0, 1}n → {0, 1}m.



Circuit Complexity: For a circuit class C, e.g. C ∈ {AC0,NC1,P/poly}, we
define C-Avoid to be the special case of Avoid where the instance C : {0, 1}n →
{0, 1}m has each output bit given by a circuit from the class C. By default Avoid =
P/poly-Avoid.

3 Reductions to Avoid
In this section we survey some of the techniques used to reduce problems to Avoid.
We start with the most basic (and arguably most important) class of reductions,
involving the production of hard boolean functions.

3.1 Hard Functions
The general scenario in the subject of non-uniform complexity lower bounds is
the following: we have a finite set U, for example U = {0, 1}n, and a class of
nonuniform “algorithms” A computing functions U → {0, 1}. A induces a set
F ⊆ {0, 1}U of those functions which are computed by one of the algorithms A ∈ A.
We would like to exhibit an explicit function f : U → {0, 1} which is not in F , and
is hence “hard” in the computational modelA. A crucial property of essentially
all computational models of interest is that there are only a few “easy functions:”
|F | << |{0, 1}U | = 2|U |. Hence the pigeonhole principle tells us that there exists
f ∈ {0, 1}U \ F , which must be a hard function.

Peering into the proof |F | << |{0, 1}U |, the argument typically goes as follows:
if f ∈ F then by definition there is some efficient computational device A ∈ A
which computes it. If A computes f on every input, then from the description of A
we may fully recover the function f . The fact that the algorithms inA are “simple”
directly implies that the device A ∈ A may be explicitly described using some
number of bits m << |U |. Hence we may define the function Eval : {0, 1}m →
{0, 1}U , which given the description of some A ∈ A, outputs the function f which
A computes. Then we have F ⊆ range(Eval), and hence any point outside the
range of Eval is a hard function. This directly yields a reduction from finding a
hard function to Range Avoidance by interpreting Eval as an Avoid instance; the
only details to be checked are: (1) the function Eval can be computed efficiently,
and (2) the encoding is sufficiently succinct so that m < |U | while keeping the
“sizes” of machines under consideration inA as large as possible (so as to prove
the best quantitative lower bounds).

Essentially the strongest models2 satisfying the first condition are boolean

2Large communication complexity classes such as PSPACEcc are (conjecturally) incomparable
to P/poly and provide other examples of computational lower bounds reducible to Avoid which do
not follow directly from Theorem 4, see [29].



circuits and Turing machines, where we obtain:

Theorem 4 ( [10, 29]).

1. Producing f : {0, 1}n → {0, 1} requiring boolean circuits of size 2n/n is
reducible in poly(2n) time to Avoid.

2. For any fixed polynomial p, producing x ∈ {0, 1}n which cannot be printed
by any Turing machine of length n − 2 running in p(n) steps is reducible in
poly(n) time to Avoid.

Note that every boolean function has circuits of size (1 + o(1))2n/n, hence
reductions to Avoid can achieve close to maximally hard boolean functions. Ob-
taining the exact bound 2n/n is good example of the sometimes nontrivial work
involved in choosing the right encoding of machines in our complexity class; an
easy analysis in [29] yields the bound 2n/2n by encoding circuits naively as DAGs;
to obtain the bound 2n/n in [10] requires a more careful encoding.

This reduction has some important consequences in light of the discussion in
Section 2.2: since explicit constructions of hard truth tables correspond to circuit
lower bounds for exponential time classes, we have:

Corollary 3 ( [29]). If Avoid ∈ FP (resp. Avoid ∈ FPNP) then E (resp. ENP)
contains a language requiring circuits of size 2n/n for all n.

In Section 5 we will see that this can be strengthened to an “if and only if” in
the case of FPNP,ENP. Combining this with the hardness/randomness connection
of [24, 37] mentioned in Section 2.1, we can also observe:

Corollary 4 ( [29]). Every language in BPP is polynomial time reducible to Avoid.

This corollary can be proven in a more direct fashion without appealing to the
powerful results of [24, 37], by instead giving a direct reduction from the problem
of constructing pseudorandom generators to Avoid. This argument is carried out
in [29].

Fine-Grained Considerations: Recall that the two main parameters of interest
for an Avoid instance C : {0, 1}n → {0, 1}m are the stretch n 7→ m and the circuit
complexity of C. When reducing hard function construction to Avoid, there is a
natural tradeoff between the quantitative strength of the lower bound and stretch of
Avoid instance; when we consider “smaller” algorithms in a classA we typically
get shorter descriptions. For example if we wish to produce f : {0, 1}n → {0, 1} hard
for circuits of size s, we can reduce to an Avoid instance with stretch poly(s(n)) 7→
2n. When it comes to the circuit complexity of the Avoid instances produced by



the reductions, the relevant question is the complexity of computing Eval, each of
whose output bits is essentially an instance of the “Circuit Value Problem” for the
class of algorithmsA. Roughly speaking, ifA corresponds to a “typical” class of
circuits such as AC0,NC1, etc., the circuit value problem forA can be computed
by circuits in the same class A; sometimes this is referred to as a circuit class
having the “universal property,” see [41] for a further discussion. As a consequence
we have:

Theorem 5 ( [41]). Let C be a circuit class with the universal property, for example
C ∈ {AC0,ACC0,TC0,NC1}. Then producing f : {0, 1}n → {0, 1} requiring C-
circuits of size s(n) is polynomial time reducible to a C-Avoid instance with stretch
poly(s(n)) 7→ 2n.

As a corollary (recall Corollary 1), if C-Avoid is solvable in polynomial time
(resp. with an NP-oracle) then E (resp. ENP) requires C-circuits of size 2Ω(n).

Note that, for circuit classes such as TC0 and NC1, it is an important open
problem to show that ENP does not have poly(n) size circuits from the class. By
the above connection, this means that we would already achieve a breakthrough
from, for example, a 2O(n) time NP-oracle algorithm for TC0-Avoid in the stretch
regime nω(1) 7→ 2n, i.e. when the number of outputs is almost exponential in the
number of inputs.

3.2 Sparse String Encodings
Say we have a map C : {0, 1}m → {0, 1}n, and an explicit construction problem
Π ⊆ {0, 1}n we want to solve which has the following property: if x < Π then
∆(x, range(C)) ≤ d, where ∆(x, A) denotes the Hamming distance of x to its closest
point in a set A ⊆ {0, 1}n. In other words, while we have not quite completed
a reduction from Π-construction to Avoid, we have exhibited an Avoid instance
whose range has small hamming distance to all the “bad strings” failing to have
property Π. This implies that Π is reducible to the following range avoidance
variant: given C, output a point which has Hamming distance > d from every
element of range(C); this variant has been referred to as Remote Point in the
literature [9].

In the case that m is sufficiently smaller than n, remote point can be reduced
back to the standard variant of range avoidance. For this it suffices to show that
sparse boolean strings can be given compressed representations decodable in
polynomial time, which is standard:

Lemma 3. For any k ≤ n, there exists a polynomial time computable map
S : {0, 1}⌈log (n

k)⌉ → {0, 1}n such that for every string x ∈ {0, 1}n of hamming weight
exactly k, y ∈ range(S ).



A simple proof of this result can be found in [19]. Clearly we may extend this
scheme to encode a string of hamming weight at most k while incurring an additive
cost of at most log k bits to specify the weight. This gives:

Corollary 5. If C : {0, 1}m → {0, 1}n is given, and log
(

n
k

)
+ log k + m < n, then

finding a string of hamming distance > k to range(C) is reducible in polynomial
time to Avoid.

This construction occurs repeatedly in reduction to range avoidance; many
important explicit construction problems can be reduced most naturally to remote
point, because their definition involves being far in hamming distance from a set of
simple objects. Some examples where this has been applied include:

1. A boolean function f : {0, 1}n → {0, 1} is hard on average for small cir-
cuits provided it is far in hamming distance from the set of low complexity
functions (used in [29]).

2. A matrix is rigid provided it is far in hamming distance from the low-rank
matrices (used in [29]).

3. A matrix generates a good linear error correcting code if each row is far in
hamming distance from the span of the others (used in [21]).

4. A list of strings (x j ∈ {0, 1}n) j∈J is a good pseudorandom generator for
size-s circuits if the string (x j

i ) j∈J ∈ {0, 1}J is far in hamming distance from
(D(x j

1, . . . , x
j
i−1)) j∈J for all next bit predictors D : {0, 1}i−1 → {0, 1} of circuit

size O(s) and all i < n (used in [29]).

In each case, combining these facts with an application of Corollary 5 yields the
reduction to Avoid in a rather straightforward way.

In [21], it is shown that two of the above problems (construction of rigid matri-
ces and strong error correcting codes) can be reduced to Avoid for restricted circuit
classes, in particular NC1-Avoid. It turns out that the main difficulty is in obtaining
a sparse-string encoding lemma along the lines of Lemma 3, where moreover the
decoder has restricted circuit complexity. The authors of [21] accomplish this using
a construction from static data structure complexity:

Lemma 4 ( [21, 38]). For each k ≤ n there is a map S n
k : {0, 1}m → {0, 1}n with the

following properties:

1. m ≤ log
(

n
k

)
+ O( n

log2 n
)

2. Every string x ∈ {0, 1}n of hamming weight at most k lies in the range of S n
k .



3. Each output bit of S n
k is computable by a O(log n)-depth decision tree over

the inputs, and moreover there is a poly(n)-time algorithm which outputs
this list of decision trees.

In particular, the last bullet means that the map S n
k is computable in AC0 ⊆ NC1.

Finally we mention an alternative approach used in [9] to reduce remote point
to range avoidance in restricted circuit classes based on error correcting codes.
Roughly, given a range avoidance instance C, we replace it with Dec ◦ C where
Dec,Enc are the decoder/encoder for a suitable error correcting code. If x is outside
the range of Dec ◦C then Enc(x) will be far in hamming distance from range(C).
This construction enjoys a superior stretch parameter at the cost of higher circuit
complexity (note that Lemma 4 cannot obtain n 7→ n2 stretch in any sparsity regime
because of the additive n/ log n penalty).

3.3 Strongly-Explicit Extractors and Related Constructions
Here we describe a technique which allows us to reduce to Avoid the construction of
circuits computing functions f : {0, 1}n → {0, 1}n with certain strong pseudorandom
properties. The reductions here run in time poly(n), and produce a circuit for f of
size poly(n); this is in contrast to the reductions in Section 3.1 which produce n-bit
boolean functions in time 2O(n) given as truth tables.

The reductions here hinge on a simple high-level construction involving k-wise
independent generators. To explain the method in sufficient generality we require
the following definition:

Definition 3. Let A ⊆
(
{0,1}n

k

)
, B ⊆ ({0, 1}n)k be given. We say that f : {0, 1}n →

{0, 1}n is a (A, B) extractor if whenever (x1, . . . , xk) ∈ A, ( f (x1), . . . , f (xk)) < B.

The idea behind the definition is as follows. We think ofA ⊆ {S ⊆ {0, 1}n, |S | =
k} as defining a class of structured subsets of k inputs, with |A| <<

(
2n

k

)
. For any

fixed set of k inputs (x1, . . . , xk) and a function f : {0, 1}n → {0, 1}n, we may think
of ( f (x1), . . . , f (xk)) ∈ B as some unlikely event, i.e. |B| << 2nk. We then have
that f is an (A, B) extractor iff f (S ) avoids the event f (S ) ∈ B whenever S ∈ A. If
Pr[(y1, . . . , yk) ∈ B] is very small for a random sequence y1, . . . , yk ∼ {0, 1}n, then
for any fixed S = {x1, . . . , xk} ∈ A of size k, if we choose f uniformly at random
we are very likely to have f (S ) = { f (x1), . . . , f (xk)} < B. If |A| is also sufficiently
small then we can union bound over S ∈ A and argue that a random f will be an
(A,B) extractor with high probability.

This existence argument can be improved in the following sense: say that
instead of choosing the function f ∼ {0, 1}n → {0, 1}n uniformly at random,
we sample it from a k-wise independent distribution F : for every fixed distinct
x1, . . . , xk ∈ {0, 1}n, ( f (x1), . . . , f (xk)) is distributed uniformly on ({0, 1}n)k when



f ∼ F . Then in this case we have f (S ) < B with the same high probability over
f ∼ F , and the rest of the argument goes through as before. Thus we can argue
for the existence of an (A,B) extractor inside of any k-wise independent function
family F .

The following reduction formalizes this using the standard construction of
k-wise independent families by univariate polynomials over a finite field. The
reduction works provided that the “smallness” ofA,B can also be exhibitted by
reductions to Range Avoidance, i.e. we can cover these sets by the range of some
explicit length-expanding functions A : {0, 1}ℓ →

(
{0,1}n

k

)
, B : {0, 1}r → {0, 1}nk. The

technique here is quite similar to an old result of Razborov [40].

Lemma 5. Let A : {0, 1}ℓ →
(
{0,1}n

k

)
, B : {0, 1}r → {0, 1}nk be given as circuits.

Provided ℓ+ r < nk, the following problem is reducible in polynomial time to range
avoidance: output the description of a polynomial size circuit f : {0, 1}n → {0, 1}n

which is an (range(A), range(B)) extractor. Moreover:

1. The circuit f produced by the reduction lies in AC0[2].

2. If A, B ∈ NC2 the Range Avoidance instance produced by the reduction also
lies in NC2.

Proof. We construct an instance of range avoidance C : {0, 1}ℓ+r → {0, 1}nk. Ele-
ments of {0, 1}nk are interpreted as vectors ᾱ = (α1, . . . , αk) ∈ Fk

2n , and to each ᾱ
we associate the function fᾱ : {0, 1}n → {0, 1}n given by:

fᾱ(x) =
k∑

i=1

αixi−1

where {0, 1}n and F2n are associated in some standard way. We will construct C so
that if fᾱ fails to be a (range(A), range(B)) extractor, then ᾱ ∈ range(C) which will
give the theorem. The fact that fᾱ lies in AC0[2] for any choice of ᾱ follows from
results of [22] on the complexity of arithmetic over F2n .

C is constructed as follows. We interpret the input as encoding (a, b) with
a ∈ {0, 1}ℓ and b ∈ {0, 1}r. Let (x1, . . . , xk) = A(a) and let (v1, . . . , vk) = B(b). We
then compute the unique degree k − 1 polynomial p ∈ F2n[x] such that p(xi) = vi

for all i; this can be accomplished in polynomial time using Gaussian elimination
on the corresponding Vandermonde matrix (by assumption A(a) outputs a list of k
distinct strings). Finally C outputs the coefficients (α1, . . . , αk) of p. Clearly we
have ᾱ ∈ range(C) whenever fᾱ fails to be a (range(A), range(B)) extractor. The
complexity of C is upper bounded by the complexity of computing A, B, together
with that of Gaussian elimination over F2n which lies in NC2. □



The above lemma can be used to reduce the construction of various “structured
seed extractors” with near-optimal parameters to Range Avoidance. An important
case of a structured seed extractor is a 2-source extractor: in this case the domain
of the function f is {0, 1}n × {0, 1}n, and the family of simple sets A is the set
of “combinatorial rectangles:” sets of the form L × R for some L,R ⊆ {0, 1}n,
|L| = |R| = k. Such a combinatorial rectangle has size k2 but can be encoded using
2kn bits, which yields the appropriate circuit A for the reduction. The “bad event”
B is that the first bit of the function f is biased towards 1 or 0 over the rectangle;
here we can use the sparse string encodings from Section 3.2 to form the circuit
B. Details of this reduction can be found in [29]. Recent advances have yielded
2-source extractors with parameters very close to optimal, but still not meeting the
bounds attainable here [8, 34]. Other kinds of structured-seed extractors studied in
the literature include extractors for varieties and for affine spaces, see [7, 14].

4 Reducibilities Between Avoid Variants
In this section we cover some known reductions between variants of Avoid which
are restricted in one of the two main parameters: stretch and circuit complexity.
Most of the complexity classes C for which we typically study C-Avoid are re-
stricted in terms of circuit depth; when we refer to the depth of an Avoid instance
C : {0, 1}n → {0, 1}m, we mean the depth of C as a boolean circuit.

4.1 Increasing the Stretch, and its Effect on Circuit Depth
The first natural question to ask is whether Avoid is robust to changes in the stretch
parameter: can we reduce a general Avoid instance in polynomial time to an
instance with stretch n 7→ n100? The following lemma is essentially the only known
result along these lines, which says that such reductions are possible, provided
we are afforded the use of an NP-oracle. The proof of this lemma is simple
and parallels classical results in proof complexity and cryptography concerning
reducibility amongst pigeonhole principles and amongst pseudorandom generators
respectively [17, 39].

Before explaining the reduction, we mention an important parameter to keep
track of, which we’ll call the depth complexity of the reduction: the reduction will
take a circuit C : {0, 1}n → {0, 1}n1 and produce a circuit C′ : {0, 1}n → {0, 1}n2

which makes some oracle calls to C and otherwise performs some basic (NC0)
computations inbetween; we refer to the depth of the reduction as the depth of the
longest chain of oracle calls C′ makes to C. The relevance is that if C is given as a
circuit of depth d0, and we construct C′ by a reduction with depth complexity d,
then C′ will be computed by an (explicitly given) circuit of depth d0 ·d. By keeping



track of this depth complexity we can analyze how our stretching reductions affect
the depth of the circuits defining our Avoid instances. To state the quantitative
condition in the tightest way we need the following function:

Definition 4. For n′ > n and d ≥ 1, define ∆d(n′ | n) by induction on d as follows:

1. ∆1(n′ | n) = n′

2. ∆d+1(n′ | n) = ⌊∆d(n′ |n)
n ⌋ · (n′ − n) + ∆d(n′ | n)

The function ∆d(n′ | n) is a kind of integral approximation to (n′/n)dn. An
operational interpretation is as follows: we start with n items in a basket, and get
to perform the following update for d steps: choose any grouping of the current
items into bundles, and replace each bundle of size exactly n by a larger bundle of
size n′. The maximum number of items obtainable in this way after d steps equals
∆d(n′ | n).

The relevant fact used in the following lemma is that, if f = g ◦ h, y < range( f ),
then either y < range(g), or else for any preimage g(z) = y we must have z <
range(h).

Lemma 6. Let n2 ≥ n1 > n be given. If ∆d(n1 | n) ≥ n2, then Avoid with stretch
n 7→ n1 can be reduced to stretch n 7→ n2 in poly(n2) time and depth complexity d
with an NP-oracle.

Proof. We prove the lemma by induction on d. Note that Avoid can always be
reduced downward in stretch by ignoring some output bits. In the case d = 1,
n2 ≤ n1, and so by this observation there is nothing to prove. If the lemma holds
up to d, then we can construct an instance C′ : {0, 1}n → {0, 1}m computable with
depth d calls to C, so that m ≤ ∆d(n1 | n), and given any solution to C′ Avoid we
can find one for C in polynomial time with an NP-oracle. We now write m as
m = k · n + ℓ for maximal k subject to ℓ ≥ 0; we can then define C′′ which, given
x ∈ {0, 1}n, first applies C′ to get an m bit string z. We can write z as z1, . . . , zk, zk+1

where |z j| = n for j ≤ k, |zk+1| = ℓ. Now C′′ outputs C(z1), . . . ,C(zk), zk+1 which
has length n1 · k + ℓ ≤ ∆d+1(n1 | n). Cleary the depth complexity of C′′ is d + 1.
Given y1, . . . , yk, yk+1 outside the range of C′′, we can use an NP-oracle to search
for a preimage of each of y j, j ≤ k under C; if one has no preimage we solve Avoid
for C, otherwise we find z1, . . . , zk, zk+1 which must lie outside the range of C′;
by induction we have an NP-oracle algorithm which then maps this to an Avoid
solution for C. □

Some important parameter regimes are highlighted below:



Reducing stretch n 7→ n1 to n 7→ n2

n1 n2 Depth Cost
n + 1 2n n
2n n2 log n
1.01n 100n O(1)
n1.01 n100 O(1)

As mentioned previously, the methods here are almost identical to those used
for a related problem: given a candidate cryptographic pseudorandom generator
(PRG) G : {0, 1}n → {0, 1}m, how and when can we construct a generator G′

with better stretch parameters whose security can be based on that of G? On the
positive side we can achieve the same stretching reductions with identical depth
complexities for PRGs as in Lemma 6 for Avoid. Despite these strong similarities,
no results are currently known which connect these problems in some more formal
framework.

4.2 Reducing the Circuit Complexity
With respect to the circuit complexity of the range avoidance instance, there is
one very powerful result known which allows us to reduce C-Avoid to C′-Avoid
for C′ much smaller than C. The result is due to [41] and utilizes the method of
randomized encodings from low-depth cryptography [1]. To state it we need the
following definition:

Definition 5. We say that a circuit C : {0, 1}n → {0, 1}m is in NC0
k if each output of

C depends on at most k inputs of C.

We then have:

Theorem 6 ( [41]). NC1-Avoid is polynomial time reducible to NC0
4-Avoid.

Since we have the circuit class inclusions NC0
4 ⊆ AC0 ⊆ ACC0 ⊆ TC0 ⊆ NC1,

this result implies that for all circuit classes C,C′ ∈ {NC0
4,AC0,ACC0,TC0,NC1},

the problems C-Avoid and C′-Avoid are polynomial time equivalent.
An important caveat is that this reduction completely destroys the stretch of

the Avoid instance we start with: if the original instance of NC1-Avoid has stretch
n 7→ n100, the NC0

4-Avoid instance we obtain from the reduction in Theorem 6 will
have stretch roughly m + n 7→ m + n100, where m is the size of the formula defining
the original NC1-Avoid instance. In particular if m is a polynomial larger than
n100, this will be in the stretch regime n 7→ n + n1−Ω(1) (up to a reparameterization
n := m+n) which cannot be boosted to a regime n 7→ (1+Ω(1))n without incurring
an nΩ(1) blowup in depth if we rely on Lemma 6. This distinction becomes crucial in



light of some later results we will see in Section 5, which show that for NC0
k-Avoid

and even ACC0-Avoid, there are unconditional FP and FPNP algorithms when the
stretch is sufficiently large.

5 Upper Bounds for Range Avoidance
In this section we explore some unconditional upper-bounds on the Range Avoid-
ance problem which significantly improve those mentioned in Section 2.3. We
have already seen that suitably strong derandomization assumptions imply that
Avoid lies in FPNP. However an unconditional proof of this would immediately
imply BPP ⊆ PNP and more generally that ENP requires 2Ω(n) size circuits almost
everywhere, and thus seems currently out of reach.

The results covered here will allow us to obtain the derandomization Avoid ∈
FPNP under weaker assumptions, as well as place it unconditionally in a complexity
class smaller than FZPPNP. For restricted variants of Avoid, we will discuss two
other sets of results which give unconditional FPNP and FP algorithms.

5.1 The Tree Construction
The first two results we discuss in this section, in addition to the result discussed
in Section 7.3, all hinge on a single construction dating back to [17, 39] and used
again in [25], which also bears a strong resemblance to the stretching reduction
from Section 4. The application of this construction to the reduction in Section 5.2
is essentially identical to its use in [25]. The application to the algorithm in
Section 5.3 bears a much stronger resemblance to [39] (and to a lesser extent [17]),
however it requires a more careful analysis.

In the following, we think of the circuit C : {0, 1}n → {0, 1}2n as an instance of
Avoid which we aim to solve. As mentioned in Section 4 we can reduce the general
case of Avoid to the case of doubling-stretch, so this is without loss of generality.

Definition 6. Let C : {0, 1}n → {0, 1}2n. C0 (resp. C1) is the function obtained by
restricting C to the first (resp. last) n bits of output. For any binary string s, define
Cs : {0, 1}n → {0, 1}n inductively as follows:

1. Cϵ is the identity map where ϵ is the empty string.

2. Cbs(x) = Cs(Cb(x)) for any b ∈ {0, 1}, s ∈ {0, 1}∗.

If S ⊆ {0, 1}∗ is a family of strings it is perhaps most natural to think of (Cs)s∈S

as a family of functions {0, 1}n → {0, 1}n. However for our purposes it will be most
natural to invert our perspective:



Definition 7. Let C be as above. For any set of strings S ⊆ {0, 1}∗, consider the
following function

CS : {0, 1}n → {S → {0, 1}n}

given by CS (x) = {s 7→ Cs(x)}.

The function CS maps elements of {0, 1}n to functions S → {0, 1}n. We will
concern ourselves only with those S ⊆ {0, 1}∗ which are prefix-free: no string in S
is the prefix of another. In this case we may identify S with a binary tree whose
leaves are S . In the important special case S = {0, 1}d, this yields a perfect binary
tree of depth d.

In this terminology we may think of CS itself a succinctly represented instance
of Avoid: it takes strings of length n and outputs functions S → {0, 1}n, which we
may in turn interpret as strings of length |S |n. This succinct Avoid instance has two
useful properties:

Lemma 7. Let C be as above, S ⊆ {0, 1}∗ prefix free. Then CS : {0, 1}n → {S →
{0, 1}n} has the following properties:

1. Given C, x and s ∈ S we may compute CS (x)(s) uniformly in time poly(|C|, |s|).

2. Say s0, s1 ∈ S have a common parent r, i.e. s0 = r0 and s1 = r1. Let
S ′ = S ∪ {r} \ {s0, s1}. Let f : S → {0, 1}n be given, let v0 = f (s0), v1 =

f (s1), and suppose v is a preimage of (v0, v1) under C. Then the for the
function f ′ given by

f ′(s) =

 f ′(s) = v if s = r
f ′(s) = f (s) otherwise

we have that f < range(CS )→ f ′ < range(CS ′).

Proof. For the first part, CS (x)(s) is equal to Cs(x) in our original notation. To com-
pute this value we expand s = (b1, . . . , bd) where d = |s| and output Cbd (· · ·Cb1(x) · · · )
which requires |s| evaluations of the circuit C.

For the second part, say that f ′ ∈ range(CS ′) and let x ∈ {0, 1}n be its preimage.
Then for all s ∈ S \ {s0, s1}, CS (x)(s) = CS ′(x)(s) = f ′(s) = f (s). On the other
hand for r we have CS ′(x)(r) = v, and hence CS (x)(sb) = Cb(CS ′(v)) = vb for both
b ∈ {0, 1} by the assumption that v is the preimage of (v0, v1) under C. Hence overall
we have CS (x)(s) = f (s) for all s, and hence CS (x) = f and so f ∈ range(CS ). □

Interpreting S as the leaves of a binary tree T , we may visualize the lemma
as follows: each function f : S → {0, 1}n is a labeling of the leaves of T by
elements of {0, 1}n. Now, CS is a map whose domain is {0, 1}n and whose range is
the set of functions f : S → {0, 1}n; each f ∈ range(CS ) is thus a certain “highly
compressible” leaf-labeling of T , with the following properties:



1. Given the “compressed representation” of f , namely the n-bit string x such
that CS (x) = f , we may compute any label f (ℓ) of any leave ℓ ∈ T in time
polynomial in the depth of the leave ℓ.

2. Given a tree T labeled by a “compressible” f as above, if we prune the tree
T to T ′ by removing two leaves with a common parent, we can attempt
to relabel T ′ by a compressible f ′ in the following way: take the labels
v, v′ assigned to these leaves, find some r such that C(r) = (v, v′), and label
the new leaf in T ′ by r. If a preimage is found we succesfully generate f ′,
otherwise we solve Avoid for C by finding a string (v, v′) outside its range.

5.2 Avoid Reduces to Hard Truth Tables
The first important upper bound for Avoid is the following:

Theorem 7 ( [25, 29]). There is an FPNP reduction from Avoid to the follow-
ing problem ϵ-Hard: given 12n

, output the truth table of a boolean function
f : {0, 1}n → {0, 1} which requires boolean circuits of size ≥ 2ϵn.

This is a rather immediate consequence of Lemma 7:

Proof. Let C : {0, 1}n → {0, 1}2n be a given Avoid instance. Set d = K log |C| for
an appropriate constant K to be determined later. Consider the tree C{0,1}

d
. This

is a map of the form C{0,1}
d

: {0, 1}n → {{0, 1}d → {0, 1}n} and can be interpreted
an instance of Avoid with input length n and output length 2dn = poly(|C|). By
Lemma 7 each g : {0, 1}d → {0, 1}n in the range of C{0,1}

d
may be computed by a

circuit of size O(|C|d). Setting K sufficiently large w.r.t. ϵ, if g : {0, 1}d → {0, 1}
requires boolean circuits of size 2ϵd then the function f : {0, 1}d → {0, 1}n given
by f (x) = (g(x), . . . , g(x)) cannot lie in the range of C{0,1}

d
. Hence any solution to

ϵ-Hard will supply us with some f < range(C{0,1}
d
).

It remains to show that we can use f to find y < range(C). For this we use the
second part of Lemma 7. Initializing S = {0, 1}d we have a string g < range(CS ).
Choose two leaves s0, s1 of S with a common parent r and let v0 = g(s0), v1 = g(s1).
Use an NP-oracle to search for the lexicographically first v ∈ {0, 1}n which is a
preimage of (v0, v1); if none exist we have solved Avoid for C. If we find a preimage
v then set:

S ′ = S ∪ {r} \ {s0, s1}

g′(s) =

 f ′(s) = v if s = r
f ′(s) = f (s) otherwise

By Lemma 7 we have g′ < range(CS ′). We keep repeating this procedure, at each
step generating a new set S ′ and some g′ < range(CS ′), with the property that each



successive S ′ is a subtree of the last. If we have not found a solution by the time we
reach the point S = {0, 1} and g = {0 7→ v0, 1 7→ v1} then we have g < range(C{0,1})
which by definition means (v0, v1) < range(C) and we are done. □

Recalling Corollary 1 and Theorem 4, we observe the following equivalence
between circuit lower bounds for ENP and FPNP Avoid algorithms:

Corollary 6 ( [29]). The following are equivalent:

1. There is a language in ENP which requires circuits of size 2n/n for sufficiently
large n.

2. There is a language in ENP which requires circuits of size 2Ω(n) for all n.

3. Avoid ∈ FPNP

Proof. (1)→(2) is immediate. Recall that by Corollary 1 the existence of a language
in ENP requiring 2Ω(n) sized circuits is equivalent to the existence of a constant ϵ > 0
and an FPNP algorithm for the problem of constructing truth tables of hardness 2ϵn.
Combining this with the above lemma yields (2)→(3). Finally, (3)→(1) is given by
Theorem 4. □

This places the question Avoid ∈ FPNP in rare company as a derandomization
question which is exactly equivalent to a computational hardness assumption;
classical hardness/randomness connections, such as those yielding BPP = P
[24, 37], are only known to hold in one direction.

5.3 Pseudodeterministic Algorithms for Avoid

So far, the best unconditional upper bound we have seen for Avoid is FZPPNP,
the class of search problems solvable with zero error by a randomized NP-oracle
algorithm running in expected polynomial time. We have also seen that under
plausible assumptions, this can be derandomized to Avoid ∈ FPNP, but proving this
unconditionally would resolve several longstanding open problems in complexity
theory and seems currently out of reach. In a pair of recent breakthroughs [10, 35],
it was shown that Avoid can be placed unconditionally inside a complexity class
lying between FPNP and FZPPNP, which is called psZPPNP:

Definition 8. We say that a search problem S ⊆ {0, 1}∗ × {0, 1}∗ is in psZPPNP if
there is a choice function F : {0, 1}∗ → {0, 1}∗ assigning each instance x of S to a
solution F(x) with (x, F(x)) ∈ S, such that F is computable in FZPPNP.



The prefix ps- stands for pseudodeterministic. Note that the computational
model associated with psFZPPNP and FZPPNP are identical: both are randomized
algorithms running in expected polynomial time with an NP-oracle, which are
required to output a valid answer with probability 1. The distinction is that a general
FZPPNP algorithm is allowed to output different solutions to a given instance
depending on its internal randomness, while a pseudodeterministic algorithm
must output a fixed solution that depends only on the instance. As mentioned in
Section 2.3, the obvious FZPPNP algorithm for Avoid is not pseudodeterministic:
its output is a uniformly random solution. The following was shown in [35],
strengthening a slightly weaker result shown immediately prior by [10]:

Theorem 8 ( [10, 35]). Avoid ∈ psZPPNP

The most important corollary of this new upper bound is that it in turn implies
a new lower bound, via the connection established in Section 2.2:

Corollary 7 ( [10, 35]). There is a language in ZPENP which requires circuits of
size 2n/n for sufficiently large n.

Proof assuming Theorem 8. This is the same as Corollary 1. Since Avoid has a
pseudodeterministic FZPPNP algorithm, and hard-truth table construction reduces
in deterministic polynomial time to Avoid (Theorem 4), there is a pseudodeter-
ministic 2O(n) time randomized NP-oracle algorithm which, given n, produces
fn : {0, 1}n → {0, 1} requiring circuits of size 2n/n. Note that the pseudodeterminis-
tic guarantee ensures that for each n, there is a unique boolean function fn produced
by this algorithm. This implies that the language

L = {x | f|x|(x) = 1}

requires 2n/n size circuits, and it can be decided in ZPENP by running the explicit
construction algorithm to produce f|x| as a truth table and outputting f|x|(x). □

The main result of [10, 35] is actually a bit stronger, giving an inclusion of
Avoid in a single-valued, functional variant of the class SP

2 which we do not define
formally here. The pseudodeterministic algorithm is then obtained by combining
this with an older result of Cai [6] which shows how to simulate SP

2 in ZPPNP.
The proof methods in [10, 35] also rely on the “tree construction” described

in the previous section. The crucial distinction between these methods and those
in the previous section is that [10, 35] consider the function CS in the case where
the prefix tree for S has depth linear in n, and hence |S | can have exponential size.
In this regime the tree cannot be written down explicitly by a polynomial time
algorithm, however we can still perform certain operations on the tree implicitly.
The first observation needed in [10, 35] is the following3:

3In [10, 35] they set S = {0, 1}2n and use a slightly different construction. The variant described
here is used in [31] and originates from [39].



Observation 2. There is an explicit function fdiag : {0, 1}n → {0, 1}n, computable
uniformly in poly(|C|) time on every input, so that fdiag < range(C{0,1}

n
).

Proof. The proof is via the standard Cantor diagonalization. For an n-bit string v let
¬v denote the string obtained by flipping all its bits. For s ∈ S set fdiag(s) = ¬Cs(s).
Then for any x ∈ {0, 1}n, C{0,1}

n
(x) differs from fdiag on input x; hence fdiag cannot

lie in range(C{0,1}
n
). □

Hence, unlike the case of the shallower Avoid-tree in Section 5.2, we can
explicitly describe an element outside the range of C{0,1}

n
. Unfortunately |{0, 1}n|

is prohibitively large and so we cannot explicitly expand the tree and perform the
reduction procedure described in the proof of Theorem 7. Nonetheless we can
consider the function CS , for certain succinctly describable S which are subtrees
of {0, 1}n, and reason about the functions f : S → {0, 1}n inside and outside of
range(CS ). This line of analysis is applied in an ingenious way in both of [10,35] to
isolate certain special solutions to an Avoid instance which have unique certificates
of correctness. The original method in [10] used a so called win-win analysis over
a family of Avoid instances of various input lengths, and is shown to work correctly
for some instance in this family. Li was able to modify (and significantly simplify)
this original construction so that it works unconditionally on all Avoid instances.

5.4 Algorithmic Methods

As we saw in Section 3.1, algorithms for C-Avoid imply C-circuit lower bounds
for exponential time classes, however for classes C below P/poly the reverse
implication is not known. It is then natural to ask whether, for the circuit classes
C which are unconditionally known not to contain large uniform classes such
as EXP,NEXP,EXPNP, we can strengthen these lower bounds to achieve range
avoidance algorithms. Two important special cases are C = AC0, where lower
bounds for very simple functions (parity) have been known for decades [2, 16],
and C = ACC0, where lower bounds inside NEXP were more recently obtained by
Williams [45].

Williams’ breakthrough result was established by general method laid out
in [45] and denoted “the Algorithmic Method.” The main theorem of [45] says that
for any “sufficiently nice” class of circuits C, any algorithm for testing the satisfi-
ability of C-circuits which has sufficiently nontrivial advantage over brute-force
search implies that NEXP does not have polynomial size C-circuits. Williams’
lower bound for ACC0 is then obtained by designing the necessary satisfiability
algorithms for ACC0. In a series of works [9, 41], Williams’ algorithmic method is
adapted to the context of Avoid, where results of the following form are given: if a
certain computational task associated with C-circuits has a slightly nontrivial algo-



rithm, then C-Avoid (with a suitable stretch parameter) collapses into polynomial
time (perhaps with an NP-oracle).

The results of [9, 41] are quite involved and beyond the scope of this survey;
the main technical ingredient in both papers is the design of highly specialized
PCPs. We mention only a major result of the second paper, which achieves the
goal of extending the best known lower bounds techniques for ACC0 to achieve
matching ACC0-Avoid algorithms:

Theorem 9 ( [9]). ACC0-Avoid with stretch n 7→ 2logω(1) n is solvable in FPNP. More
specifically, for each d,m ∈ N there exists c ∈ N and an FPNP algorithmA which
solves Avoid on instances C : {0, 1}n → {0, 1}m in which each output is computed
by a depth d poly(m) size circuit over the basis {∨,∧,MODm}, provided m ≥ 2logc n.

It should be noted that this theorem is “optimal” in terms of the stretch in the
sense that it recovers the best known quantitative lower bounds against ACC0: any
Avoid algorithm of the above kind immediately implies that ENP requires 2nΩ(1)

size
ACC0 circuits by Theorem 5, and obtaining an FPNP algorithm in a stronger stretch
regime would imply a better lower bound then is currently known.

5.5 NC0 Avoid With Large Stretch

We mention here briefly the only other case of Avoid for which nontrivial algorithms
are known:

Theorem 10 ( [18, 21]).

1. NC0
2-Avoid has a polynomial time algorithm.

2. NC0
k-Avoid has a polynomial time algorithm in the stretch regime n 7→

nk−1/ log n.

Unlike the previous upper bounds for Avoid, these algorithms are based on
direct combinatorial properties of the special Avoid instances. The first is from [21]
and is a rather direct application of known polynomial time algorithms for 2-Sat.
The second result was first proven in a weaker form in [21], utilizing the theory of
k-wise independent distributions. This original algorithm required a stretch regime
n 7→ nk−1 and only worked with an NP-oracle; both aspects were improved in [18],
which uses an iterative algorithm to maintain a prefix (y1, . . . , yi) ∈ {0, 1}i, so that
many of its extensions to a complete string y ∈ {0, 1}m lie outside the range of the
Avoid instance C.



6 Lower Bounds for Avoid
In this section we cover some results which indicate the hardness of solving
Avoid in certain complexity classes. Of course any unconditional lower bound for
polynomial time algorithms would imply P , NP, hence we can only hope for
results here which are conditional or which hold against severely restricted models
of computation.

We have seen in Section 3 that many difficult and well-studied explicit con-
struction problems reduce to Avoid. Certainly this qualifies as evidence of the
mathematical difficulty of discovering improved algorithms for Avoid, however it
would only qualify as evidence of computational hardness if we had reasons to
believe that some of these problems were truly outside of polynomial time. While
the situation is certainly unclear, the prevailing wisdom is that most (if not all)
of the explicit construction problems discussed in Section 3 ultimately lie in P.
The intuition seems to be that, once a suitable mathematical understanding of
the relevant pseudorandom concept (e.g. circuit complexity or matrix rigidity) is
obtained, explicit constructions will follow; the only barrier is our (humanity’s)
mathematical immaturity. Hence to get “evidence” of the computational hardness
of Avoid, it seems we need to look for reductions to Avoid from problems of a
different flavor.

Even if the intuition in the previous paragraph is unconvincing, there is a
second reason why reductions from explicit construction problems fail to resolve
the hardness of Avoid: since explicit construction problems have unary input, they
are all solvable in FP/poly by hardcoding a solution of each length as advice. For
this reason, the results in Section 3 seem to have no bearing whatsoever on the
question of whether Avoid is solvable by polynomial-size circuits.

6.1 Cryptographic Hardness
The first evidence of strong computational hardness for Avoid, namely Avoid <
FP/poly, was obtained in [23] using a strong cryptographic assumption. This
assumption, known as indistinguishability obfuscation or IO for short, posits
the existence of a universal compiler which can take any program (circuit) C
and produce an equivalent one IO(C) which has the same functionality as the
original, but which hides all implementation details: for any pair C,C′ with the
same functionality, IO(C) and IO(C′) should look the same to a computationally-
bounded observer. This concept was originally introduced in [5] (where a more
formal definition can be found) and has received considerable attention in the
years since. In [23], it is shown that assuming the existence of IO we can obtain
conditional hardness for Avoid:



Theorem 11 ( [23]). Assume that there exists IO scheme secure against subex-
ponential time nonuniform algorithms and that NP ⊈ coNP/poly. Then Avoid <
FP/poly.

For a considerable span of time after the original definition of IO in [5]
there was little public consensus on whether or not secure IO was a plausible
assumption. This changed after a recent breakthrough of Jain, Lin and Sahai [27],
who demonstrated how to construct IO from a few concrete cryptographic hardness
assumptions which have each withstood years of attacks and are considered highly
plausible. As a result, the existence of IO is now considered by many as “likely
true” and hence the results of [23] give a rather convincing argument that Avoid is
not solvable by polynomial size circuits.

A second line of work by [11] obtains a similar kind of cryptographic hardness
for Avoid, which moreover applies to C-Avoid for very simple classes of circuits C.
In particular, assuming the hardness of certain nonstandard variants of LWE and
LPN, [11] obtain hardness for TC0-Avoid, and hence for NC0

4-Avoid by Theorem 6.
The cryptographic assumptions used in [11] are introduced in the paper itself and
have an unclear relationship with the more standard variants of LWE and LPN
studied widely in the literature.

6.2 Hardness in the Black Box Model
A second kind of “hardness” result for Avoid is known in a restricted computational
model, called the “black box” or “decision tree” model. Here it can be shown that no
FPNP algorithm can solve Avoid given that it treats the instance C : {0, 1}n → {0, 1}m

as a black box and ignores its implementation as a boolean circuit. By standard
techniques, this can be used to build an oracle relative to which Avoid is not in
FPNP (see [43] for an explanation). This lower bound was essentially proven by
Wilson [44], who gave an oracle relative to which ENP ∈ P/poly; the interpretation
of this result in terms of Avoid was first noted by [43]. Since the proof is quite
simple and Wilson states it in a rather different terminology, we reproduce it here
in the language of range avoidance. We first need the following definition of a
black-box FPNP query algorithm:

Definition 9. Let N,M be given, M ≥ 2N and both powers of two. Each assignmet
α ∈ {0, 1}N log M can be interpreted uniquely as defining a function fα : [N]→ [M],
i.e. for x ∈ [N] and j ∈ [log M] we interpret αx, j as the jth bit of fα(x).

Let Q be a query algorithm which, given an assignment α, may choose at each
step a DNF D over the variables {αi | i ∈ N log M}, and receive its value. After
all queries have been made, Q must output a value y ∈ [M]. We say that Q solves
the Avoid problem if for all assignments α, Q(α) outputs a value y < range( fα).
The “width complexity” of Q is the maximum width of a DNF it queries, and the



“query complexity” is the maximum number of queries it makes before outputting an
assignment.

If we imagine N = {0, 1}n and M = {0, 1}m for some m > n, then each
fα : [N]→ [M] corresponds to a potential “oracle instance” of Avoid. Now, from
the perspective of an FPNP algorithm, each NP query may make a nondeterministic
guess, followed by a polynomial time verification. This verification can only read
poly(n) = poly log(N) bits of the oracle assignment α. The NP query outputs
1 if at least one of these verifications pass. Hence the value of this query, as a
function of the oracle assignment, corresponds to a DNF of width poly log(N)
over the variables of α, and since the FPNP algorithm must run in poly(n) =
poly log(N) time, it can only make poly log(N) many such queries to the oracle
before terminating. Hence if we can prove that any query algorithm Q of the
above form must have either its query complexity or width complexity exceeding
poly log(N) then this will show that no such FPNP algorithm can work relative to
every oracle.

Theorem 12 ( [44]). If Q is as above, has query complexity q and width complexity
w and solves the [N] → [M] Avoid problem, then qw ≥ N. Hence Avoid < FPNP

relative to some oracle.

Proof. We will design an adversary which can answer enough DNF queries so that
Q is forced to output an answer, but does not give enough information about the
purported assignment α so as to fix any y to be outside the range of fα. At each
step we maintain a partial assignment ρ : [N]→ [M], so that after t steps we have
|domain(ρ)| ≤ tw. When a DNF D =

∨
j τ j is presented, we search for a term τ j

such that there exists a total assignment consistent with both τ j and the current
partial assignment ρ. If so, then since the width of τ j is at most w, we may extend
ρ to ρ′ by defining it on at most w additional inputs so that already τ j(α) = 1 for all
total assignments α extending ρ′; the adversary then answers “true” for the DNF
query D. If it cannot find such an extension the adversary answers “false;” in this
case we know that for any extension of ρ we will always falsify all terms in D.
Now, if qw < N then the adversary may continue this process q times and reach a
termination point of Q, after which Qmust output some candidate solution y. Since
at this point |ρ| ≤ qw < N, there is some x ∈ [N] so that ρ(x) is undefined; the
adversary then sets ρ(x) = y and completes ρ everywhere else to a total assignment
α. At this point all the query responses supplied by the adversary are true of α,
however y ∈ range( fα), hence Q(α) has the wrong behavior. □

In [31] a much stronger oracle separation is shown for a variant of the Avoid
problem, called Strong-Avoid, in which we are given a boolean circuit of the
form C : {0, 1}n \ {0n} → {0, 1}n, and must find an n-bit string outside its range



(in other words we are excluding 0n from consideration in the domain). It is
shown in [31] that (relative to an oracle), Strong-Avoid is not solvable in FP

ΣP
2
||

, the
class of search problems solvable in polynomial time with non-adaptive access
to a ΣP

2 oracle. This implies as a special case that the (relativizing) upper bound
Avoid ∈ psZPPNP mentioned in Section 5.3 cannot be applied to the more general
problem Strong-Avoid. The proof of this separation involves techniques developed
to analyze bounded-depth proof systems and AC0 circuits, and in particular relies
on a specialized variant of the switching lemma.

7 Lossy Code
So far we have focused exclusively on the general Avoid problem, which is a
total search problem lying in the second level of the polynomial hierarchy. In
this section we will explore a “younger cousin” of Avoid which we refer to as the
Lossy Code Problem or Lossy for short. This problem lies one level down in the
polynomial hierarchy and is a total search problem in the heavily-studied class
TFNP. Similar to Avoid, obtaining better algorithms for Lossy can be viewed as a
derandomization problem. However, the motivation to study it is admittedly weaker
than in the case of Avoid: while obtaining derandomized algorithms for Avoid
would have tremendous consequences for circuit complexity and derandomization,
we will see only one unconditional interesting consequence that follows from a
derandomized algorithm for Lossy. On the other hand, since Lossy is an inherently
easier problem than Avoid, and indeed easier even than derandomizing BPP and
ZPP4, it is possible that we can obtain positive results for this problem which are
too difficult to obtain in the case of Avoid.

7.1 Definition and Basic Inclusions
We start with the formal definition of the problem:

Definition 10 (Lossy code, [30]). Lossy Code, denoted Lossy, is the following
problem: given circuits E : {0, 1}n → {0, 1}n−1, D : {0, 1}n−1 → {0, 1}n, find an
input x ∈ {0, 1}n such that D(E(x)) , x.

It is useful to think of E as an encoding function which compresses an n-bit
string down to a shorter string, and D as a decoding function which attempts to
recover the original string from its encoding. Here the pigeonhole principle tells us
that E,D cannot define a true lossless compression scheme: there must be some x

4Technically speaking this only holds if we define BPP,ZPP as promise classes, but we will
not concern ourselves with this distinction here.



which is not recovered form its encoding. The basic upper bounds for this problem
are as follows:

Observation 3. Lossy ∈ TFNP ∩ FZPP.

Proof. Lossy is an NP search problem since the validity of a solution D(E(x)) = x
can be checked in polynomial time. It is total by the pigeonhole principle. A
random candidate solution is correct with probability ≥ 1

2 . □

As per Lemma 1, the inclusion in FZPP tells us the following:

Corollary 8. Under standard derandomization assumptions, namely that E re-
quires 2Ω(n) size circuits, Lossy is solvable in deterministic polynomial time.

Hence, unlike Avoid where “conventional wisdom” at best gives an upper
bound of FPNP, for Lossy it tells us the problem should completely collapse into
polynomial time. We can also easily observe that in a more direct sense, Avoid is
at least as hard as Lossy:

Observation 4. Lossy Code is polynomial time reducible to Avoid.

Proof. Let (E,D) be a Lossy Code instance. Note that D by itself can be considered
as an instance of Avoid. If x < range(D) is an Avoid solution for D, then clearly
D(E(x)) , x and so it is also a solution for the Lossy Code instance. □

Perhaps more enlightening is the following more informal connection to Avoid.
Say that C : {0, 1}n−1 → {0, 1}n is an arbitrary Avoid instance, and consider the
lexicographical-pseudoinverse C−1 : {0, 1}n → {0, 1}n−1 defined as follows: C−1(x)
outputs the lexicographically first preimage of x if one exists, else it outputs 0n.
Then any solution to the Lossy “instance” (C−1,C) is a solution to Avoid. Clearly
(C−1,C) is not actually a valid instance of Lossy, since given C we cannot efficiently
construct a boolean circuit computing C−1 (indeed assuming NP ⊈ P/poly there
are some cases in which no small circuit for C−1 exists). However, if we have
access to an NP-oracle, we can effectively use it to evaluate C−1; hence an FPNP

algorithm can, in some cases, treat an Avoid instance as an implicitly defined Lossy
instance. In this sense we may view Lossy as a kind of “polynomial-time model”
of the more general Avoid problem, where certain techniques that worked for Avoid
only in the presence of an NP-oracle are now available in polynomial time for
Lossy. For example:

Lemma 8. For any constant c ∈ N, a general instance of Lossy is polynomial time
reducible to an instance E : {0, 1}n

c
→ {0, 1}n,D : {0, 1}n → {0, 1}n

c
.

Proof. Identical to Lemma 6, replacing the NP-oracle with E. □



Similar to the direct reduction of Lossy to Avoid, there is also an immediate
reduction of Lossy to the more standard pigeonhole problems in TFNP:

Definition 11 ( [26]). WeakPigeon is the following search problem: given a circuit
E : {0, 1}n → {0, 1}n−1, find a pair x , x′ ∈ {0, 1}n such that E(x) = E(x′).

WeakPigeon is the complete problem for the TFNP class PWPP, which itself
is a subclass of the more famous PPP. We can then observe:

Observation 5. Lossy is polynomial time reducible to WeakPigeon.

Proof. Let (E,D) be an instance of Lossy. Interpret E as an instance of WeakPigeon
and let x , x′ be a solution. Then either x or x′ must be a Lossy solution since for
y = E(x) = E(x′) it cannot be that D(y) = x and D(y) = x′. □

7.2 Problems Reducible to Lossy Code
The primary motivation to study Avoid stems from the plethora of important
problems which reduce to it. In contrast, the set of known reductions to Lossy is
rather sparse. The only well-studied problem for which an unconditional reduction
to Lossy is known is the derandomization of Catalytic Logspace, a complexity
class defined in [4]:

Definition 12 ( [4]). A language L is in Catalytic Logspace, denoted CL, if it is
computable by a Turing machine of the following form. The machine has three
tapes:

1. Input tape: this tape has length n and is read-only.

2. Work tape: this tape has length O(log n) and is read-write.

3. Catalytic tape: this tape has length poly(n) and is read-write.

At the beginning of the computation, the input x is written on the input tape, the
work tape is initialized to all-zeroes, and the catalytic tape is intialized to an
arbitrary value z. The machine must have the following behavior on all such initial
configurations (x, z):

1. At the end of the computation, the machine successfully decides whether or
not x ∈ L.

2. At the end of the computation, the catalytic tape is returned to its original
state z.



It was shown in [4] that CL ⊆ ZPP; hence under suitable derandomization
assumptions CL ⊆ P, however it has remained an open problem to prove this
unconditionally. The following upper bound, improving the bound CL ⊆ ZPP, is
established in [12]

Theorem 13 ( [12]). Any language L ∈ CL is (deterministic) polynomial-time
reducible to Lossy

Two more reductions to Lossy are shown in [30]; unlike the previous they only
give a reduction to a nonstandard variant of Lossy

Definition 13. Let A, B ⊆ {0, 1}∗ be languages. The problem LossyA,B is defined
as follows: given an A-oracle circuit E : {0, 1}n → {0, 1}n−1 and a B-oracle circuit
D : {0, 1}n−1 → {0, 1}n, solve the Lossy problem for (E,D): find a string x so that
D(E(x)) , x. We abbreviate LossyA := LossyA,∅.

As hinted above, we can reduce a general Avoid instance C to LossyNP by
letting D = C and E = C−1 (the lexicographical pseudoinverse); since we can
always ignore the encoder and solve Avoid for the decoder, we see that the problems
Avoid and LossyNP are completely equivalent. Hence any of the important explicit
construction problems covered in Section 3 can be reduced directly to LossyNP

and this reduction tells us nothing new. In [30], two examples are given where
an interesting explicit construction problem is reduced to LossyA for a language
A ∈ NP which is not known to be NP-hard, or to LossyA,B where A, B lie in
NP ∩ coNP. Such a reduction tells us more than a generic reduction to Avoid =
LossyNP, however it is still much weaker than a full reduction to Lossy. The most
interesting of these reductions is the following:

Theorem 14 ( [30]). Consider the problem: given 1n, produce a prime number
p > 2n. This problem is reducible to LossyFAC,FAC, where FAC is the integer-
factorization problem. In particular if FAC ∈ P then prime construction is re-
ducible to Lossy.

This theorem follows from a careful analysis of the result of [39] in Bounded
Arithmetic mentioned in the introduction, who showed that the existence of in-
finitely many primes can be proved in I∆0 if we add as an axiom the weak pigeon-
hole schema for ∆0 formulas. The reduction in Theorem 14 produces a prime in
the range [2n, 232n].

7.3 Conditional and Unconditional Upper Bounds for Lossy
Code

The main positive result in [30] is a conditional derandomization for Lossy under
an unusual hardness assumption for uniform deterministic algorithms. This deran-



domization result does not quite apply to the generic search problem Lossy, but
rather to uniform instance sequences of the search problem:

Definition 14. We say that a sequence of strings X = (xn)n∈N is a “uniform sequence”
if there is a fixed deterministic Turing machine MX which prints xn in poly(n) time
given 1n.

Let S ⊆ {0, 1}∗ × {0, 1}∗ be a search problem. We say that a search problem S
is polynomial time solvable on uniform instances if for every uniform sequence
X = (xn)n∈N, there is a second uniform sequence Y = (yn)n∈N so that for all n,
(xn, yn) ∈ S, i.e. yn is a solution to instance xn of the search problem S.

The motivation for this definition is as follows: for explicit construction prob-
lems ECΠ, there is only one relevant “instance” of each length that we care about
solving. The instance is the string 1n, and the goal is to produce a string yn ∈ Πn

given this “instance.” This means that solving the explicit construction problem
ECΠ in polynomial time is equivalent to solving it on uniform instance sequences.
Thus for the search problems Lossy and Avoid, which we primarily care about
because of the explicit construction problems that reduce to them, we would already
be satisfied with novel algorithms which only worked on uniform input sequences.

The main result in [30] says that, assuming certain uniform time-space tradeoffs
for Turing machines, we can solve Lossy on all uniform sequences in polynomial
time. The specific tradeoff assumption needed is the following:

Hypothesis 1. There is a constant ϵ > 0 and a language L so that the following
holds:

1. L is decidable by a Turing machine running in time 2n.

2. Any Turing machine M running in time 2(1+ϵ)n and space 2ϵn fails to decide L
on some n-bit input, for all sufficiently large n.

We then have:

Theorem 15. [30] Assuming Hypothesis 1, Lossy can be solved in deterministic
polynomial time on all uniform instances.

Recall (Corollary 8) that standard derandomization assumptions already col-
lapse Lossy into polynomial time, with no caveats about uniform input sequences.
These standard derandomization assumptions posit the existence of languages of
bounded uniform complexity which are hard for boolean circuits, i.e. nonuniform
algorithms. The important distinction between these results and the above theorem
is that Theorem 15 uses a hardness assumption against uniform algorithms, i.e.
Turing machines with no advice.



The proof of Theorem 15 utilizes the tree-construction from Section 5.1. The
idea is roughly the following: say there is a uniform instance of Lossywhich is hard
for all polynomial time algorithms. This defines a compression scheme, computable
uniformly in polynomial time, whereby any n-bit string may be compressed to
n − 1 bits and then recovered later; while the compression must fail for some
strings, no polynomial time observer will be able to construct an example of such a
string. Using a modification of the tree construction, this scheme can be iterated to
construct a “virtual RAM,” whereby a large memory of size s can be compressed
to sϵ bits, and each bit can be read/written at cost sϵ; any read or write operation
causing the virtual RAM to fail will indicate a failure point of the compression
scheme. We can then use this to simulate any T -time computation in T ϵ space,
with an overhead of T ϵ time to simulate each step of the original computation. If
there was any uniform machine where the low-space simulation failed, a poly(T )
time algorithm could use it to to find a string on which the compression procedure
failed, and hence solve the uniform instance of Lossy.

Finally, we mention one additional positive result which is relevant to solving
uniform instances of Lossy. This stems from the powerful result of [13] mentioned
in Section 2.1, which gives a polynomial time pseudodeterministic algorithm for
ECΠ whenever Π is a dense property recognizable in P. Observe that if (xn)n∈N is a
uniform instance of Lossy, the set of y which form a solution for the instance xn is
a dense, polynomial time recognizable set. As a direct corollary we get:

Corollary 9. For every uniform sequence of Lossy instances X = (xn)n∈N, there
is a solution sequence Y = (yn)n∈N and a polynomial time randomized algorithm
which outputs yn with high probability for infinitely many n.

8 Open Problems
In this section we highlight some important open problems related to the topics
discussed in this survey.

8.1 Better Stretching Reductions?

The first problem we highlight is to determine whether the stretching reduction in
Section 4 is optimal in terms of depth:

Problem 1. Is there an FPNP reduction from stretch n 7→ αn to m 7→ βm with
depth complexity significantly better than logα β?

Along the same lines we may ask:



Problem 2. Can we reduce C-Avoid to constructing C-hard truth tables for any
class C smaller than P/poly?

These two problems seem closely related: the reduction of Avoid to hard truth
tables is essentially an extension of the stretching reduction, and the reason that
it fails for depth-restricted circuit classes is precisely because of the depth cost
inherent in the repeated composition of the avoid instance.

Perhaps the most exciting possibility is that the answer to one or both of these
questions is positive, and that it can be proven unconditionally by exhibiting the
reduction. Recall that the reduction from Avoid to hard truth tables allows us to
prove a kind a hardness amplification result for the circuit complexity of ENP: if
this class requires 2Ω(n) size circuits then it also requires 2n/n sized circuits. It can
be shown using the same argument that if EXPNP requires 2nΩ(1)

sized circuits, then
it also requires 2n/n sized-circuits. If such an amplification result could be shown
for the case C = AC0 using a superior stretching reduction, and we could boost the
known 2nΩ(1)

AC0 lower bounds for parity to 2Ω(n) lower bounds for a function in
EXPNP, this would imply the breakthrough EXPNP ⊈ NC1 (this observation was
made in [41]).

However it is equally natural to conjecture that the answer is negative, in which
case we cannot hope to refute it unconditionally without proving P , NP. In
this case, it would be interesting to show a negative result in a restricted black
box model of reducibility: note that the stretching reduction in Lemma 6 treats
the Avoid instance in a completely black box way, and the depth of the reduction
can be measured in a black box sense with no reference to boolean circuit depth.
The analogous question for PRG stretching reductions has been asked before (in
a suitable formalization of the black box model), and remains almost completely
unsolved [36].

8.2 Stronger Hardness for Avoid?
The second problem we highlight is to better understand the computational hardness
of Avoid. The results of [11, 23] highlighted in Section 6 tell us that Avoid is hard
under very strong cryptographic assumptions. It is still unclear whether we can
base the hardness of Avoid on something more standard. In particular the following
remains completely open:

Problem 3. Is Avoid NP-hard under polynomial time Turing reductions? Would
such NP-hardness contradict any standard complexity theoretic assumptions? Is
there an oracle relative to which Avoid ∈ FP but P , NP?

Note that if severe restrictions are placed on the reduction, it is possible to
show that Avoid cannot be NP-hard unless NP = BPP [23]. In particular if there is



a reduction from Sat making a small number of queries to Avoid instances with
stretch n 7→ n2, then we may replace the oracle response with a random string, and
the behavior of the reduction will still be correct with high probability. However, if
a reduction adaptively queries poly(n) many instances each with stretch n 7→ n + 1
and is only guaranteed to be correct when supplied with correct answers to all
queries, replacing the oracle with random bits appears useless.

8.3 Lossy Code: More Reductions and Better Upper Bounds?
Lastly we discuss some directions for future work on the less explored problem
Lossy. The first direction is to try to demonstrate the power of the problem
Lossy by exhibiting more reductions from explicit construction problems to it. As
discussed at the end of Section 7.3, any explicit construction problem reducible to
Lossy must also be reducible to the explicit construction problem ECΠ for a dense
language Π ∈ P. Currently the only interesting example of such a problem we are
aware of is the construction of prime numbers, where a reduction to Lossy is only
known to hold under the (unlikely) assumption that integer factoring is in P. It
would add significant motivation to the study of Lossy if this assumption could be
removed:

Problem 4. Can the problem of constructing a prime p > 2n be reduced in poly(n)
time to Lossy unconditionally? More generally, are there any other interesting
unsolved explicit construction problems which can be reduced unconditionally to
Lossy?

A primary motivation for studying Lossy is that it is essentially the easiest
generic derandomization problem we are aware of, and thus we may hope to get
unconditional upper bounds for it before we are able to achieve more lofty goals
such as Avoid ∈ FPNP or BPP = P.

Problem 5. Does Lossy admit nontrivial upper bounds similar to those given for
Avoid in [10, 35], other than the infinitely-often pseudodeterministic algorithm on
uniform instances given by [13]?

For this problem, we note an obstacle which is that Lossy is a TFNP search
problem, and it is known that essentially all nontrivial algorithmic subclasses of
TFNP collapse to P in the black box model, while Lossy does not. This presents
an obstacle for a result similar to [35] (which relativizes) to apply to Lossy; see the
introduction of [31] for a discussion of this issue. However, the pseudodeterministic
construction in [13] is also non-relativizing in this same sense (see [20]). For this
reason it seems possible that something could be done along the lines of [13],
which uses specific properties of uniform instances of Lossy that do not hold for
general dense P explicit construction problems. For example:



Conjecture 1. Let Π ∈ {0, 1}∗ be an explicit construction problem reducible to
Lossy Code. Then there is an NP language L so that for infinitely many n, Ln ⊆ Πn

and |Ln| = 1.

Of course under strong enough derandomization assumptions we expect signif-
icantly stronger assumptions to hold; the question is whether a result of this form,
which is not immediately implied by [13], could be established unconditionally
using specific properties of the search problem Lossy.
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