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This month, in the Distributed Computing Column, Francesco d’Amore sur-
veys some recent exciting results in quantum distributed computing, focusing on
the question of when a distributed quantum advantage is possible. That is, imagine
you have a network of quantum computers connected via quantum communica-
tion channels; when can such a network solve a problem faster than in the classical
LOCAL model? While general versions of the questions remain open, there has
been significant and compelling progress in the last several years.

To answer this question of quantum advantage, d’Amore begins by examining
the fundamental principles that enable fast quantum distributed computation, e.g.,
issues related to causality and independence of output distributions. He explores
the landscape of intermediate models, including those both stroger and weaker
than the “quantum-LOCAL” model, including discussions of “non-signalling”
models, “bounded dependence” models, and online local models. These models
provide key technical tools for excluding quantum advantage—or showing when
it may help. The survey then describes a recently discovered concrete example of
a local problem that is provably faster in the quantum models: it can be solved
in O(1) time in quantum-LOCAL, but requires Ω(∆) time in classical LOCAL
(where ∆ is the maximum degree of the network graph).

Overall, then, this article provides a comprehensive overview of the state-of-
the-art for quantuam distributed algorithms today, along with some nice insight
into the tools and techniques needed to understand the performance of these algo-
rithms.

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.
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Abstract

Quantum advantage is well-established in centralized computing, where
quantum algorithms can solve certain problems exponentially faster than
classical ones. In the distributed setting, significant progress has been made
in bandwidth-limited networks, where quantum distributed networks have
shown computational advantages over classical counterparts. However, the
potential of quantum computing in networks that are constrained only by
large distances is not yet understood. We focus on the LOCAL model of
computation (Linial, FOCS 1987), a distributed computational model where
computational power and communication bandwidth are unconstrained, and
its quantum generalization. In this brief survey, we summarize recent progress
on the quantum-LOCAL model outlining its limitations with respect to its
classical counterpart: we discuss emerging techniques, and highlight open
research questions that could guide future efforts in the field.

1 Introduction

Since the advent of quantum computing, extensive research has been conducted
to explore its potential, revealing its advantage over classical computing, at least
from a theoretical point of view: there are problems that classical algorithms solve
in super-polynomial time, while quantum algorithms can solve them in polyno-
mial time [Aar22]. But what about distributed quantum advantage?

There is a large body of research investigating this question in bandwidth-
limited networks [Cen+22; LM18; WY22; WWY21; IL19; ILM20; AV22; Fra+24;
MN22]. Such networks are captured by (possibly variants of) the CONGEST
model of computing. In essence, the question is: can a synchronous network of
quantum computers that send b quantum qubits per time unit to each neighbor
outperform a synchronous network of classical machines that send b classical bits



per time unit? It turns out that in many cases, the answer is yes. There are com-
putational tasks that are asymptotically easier to solve in the quantum-CONGEST
model (and related variants): see, e.g., [IL19; ILM20; LM18].

However, if we consider instead networks that are constrained only by large
distances, the scenario is much less understood. Such networks typically model
distributed systems where network latency and the time required for information
to propagate play key roles. We emphasize that large distances are a fundamen-
tal physical limitation of distributed networks: information, whether classical or
quantum, cannot travel faster than the speed of light. This limitation cannot be
overcome by technological progress, unlike bandwidth constraints, which can
benefit from innovations (say, the installation of multiple parallel communication
channels by, e.g., increasing the number of fiber-optic links between nodes).

Such distance-constrained networks are modeled by the famous LOCAL model
of computation, first introduced in the seminal work by Linial [Lin87] (see [Lin92]
for the journal version). In the LOCAL model, a distributed network is repre-
sented as a graph G = (V, E), where the nodes of G are processors capable of un-
bounded local computation, and the edges represent communication links. Time
proceeds synchronously: in each round, nodes send and receive messages of arbi-
trarily large size from their neighbors and perform local computations to update
their state variables. Eventually, all nodes announce their outputs, marking the
end of the computation. The complexity measure in this model is the number
of communication rounds required to solve a problem, captured by the notion of
locality. Specifically, T rounds of communication allow a node to gather infor-
mation about the topology and input within its radius-T neighborhood. Thus, T
is also called the locality of the algorithm, reflecting why distances are the only
limitation in this model.

The LOCAL model has been extensively studied [Lin92; Nao91; NS95; CKP16;
CKP19; GKM09; CP19; GHK18; FG17; GKM17; Bra+16; Hir+17; KMW04;
KSV13]. A specific class of problems of particular interest in distributed comput-
ing is locally checkable labeling (LCL) problems, introduced by Naor and Stock-
meyer [NS95]. LCL problems are defined via local constraints (e.g., graph color-
ing). For LCL problems, a solution may be hard to find but is easy to verify with
a distributed algorithm. As such, LCL problems can bee seen as the distributed
analogue of the FNP class in centralized computation. Nowadays, we have a good
understanding of complexity landscape of LCL problems in the LOCAL model
[NS95; CKP19; CKP16; CP19; Bal+18; Bal+19a; Bal+19b; Bal+21a; Bal+20;
Bal+21b; Bal+22b; Bal+22a; Bal+23a; Bal+23b; Bra+17; Bra19; Akb+23].

To date there is no clear understanding of the impact of quantum computation
and communication in the LOCAL model, especially concerning LCL problems.
The main challenge lies in the lack of tools for directly tackling quantum-LOCAL,
particularly for establishing lower bounds. Nevertheless, general arguments based



on physical principles, such as causality and independence of output distributions,
provide some insights.

In this brief survey, we summarize previous knowledge and recent results,
introducing new techniques for investigating the role of quantum computation
and communication in distributed settings and shedding light on potential research
directions.

2 Preliminaries
In order to proceed, we need to provide the mathematical framework in which we
work. We start with some basic graph notations and definitions, introducing the
class of problems we consider and the computational model that is the heart of
our investigation. Section by section, we will give other definitions that are useful
for that section and the subsequent ones. We denote the set of natural numbers
(starting from 0) by N, and also define N+ = N \ {0}.

Graphs. We work with simple graphs unless otherwise specified. Given any set
S , we denote by

(
S
k

)
the set whose elements are all sets of k different elements of S .

We will consider both undirected and directed graphs. A graph is a pair G = (V, E)
where V is the set of nodes and E is the set of edges. In case of undirected graphs,
E ⊆

(
V
2

)
, whereas E ⊆ V × V in case of directed graphs. For any graph G, we also

denote its set of nodes by V(G) and its set of edges by E(G).
The distance between two nodes u, v of any graph G is the number of edges

in any shortest path between u and v (note that the shortest path is not necessarily
an oriented path), and is denoted by distG(u, v). The notion of distance can be
easily extended to subset of nodes: Given any node u ∈ V and any two subsets
A, B ⊆ V , the distance between u and A is distG(u, A) = minv∈A{distG(u, v)} and
the distance between A and B is distG(A, B) = minu∈A,v∈B{distG(u, v)}. When the
graph is clear from the context, we omit the suffix and write only dist() instead of
distG(). Through the notion of distance, we define the diameter of a graph G to be
diam(G) = maxu,v∈V(G) distG(u, v).

For any non-negative integer T , the radius-T (closed) neighborhood of a node
u in a graph G is the set NT [u] = {v ∈ V | dist(u, v) ≤ T }. Throughout this survey,
we will only make use of closed neighborhoods. More in general, the radius-T
neighborhood of any subset of node A ⊆ V isNT [A] = ∪u∈ANT [u]. We also define
the ring neighborhood between T1 and T2 of a node u ∈ V(G) (for T1 ≤ T2) as
N

T1
T2

[u] = NT2[u] \ NT1[u]. We use an analogous notation for subsets of nodes.
The degree of a node v in an undirected graph G is the number of edges the

node belongs to, i.e., degG(v) = |{{u, v} ∈ E(G) | u ∈ V(G)}|. In a directed graph
G, we define the indegree and the outdegree of a node v as follows: indegG(v) =



|{(u, v) ∈ E(G) | u ∈ V(G)}| and outdegG(v) = |{(v, u) ∈ E(G) | u ∈ V(G)}|. Then
the degree of v in G is just degG(v) = indegG(v) + outdegG(v). In all these no-
tations, we omit the suffix when the graph is clear from the context. Finally,
the degree of a graph G is just the maximum degree of any node, i.e., deg(G) =

maxv∈V(G){degG(v)}.
For any graph G = (V, E) and any subset of nodes A ⊆ V , the subgraph of

G induced by A is denoted by G[A]. Consider any node u ∈ V (or any subset
S ⊆ V): with an abuse of notation, we define the open induced subgraph as the set
G̊[NT [u]] = G[NT [u]] \G[NT−1

T [u]]. (or G̊[NT [S ]] = G[NT [S ]] \G[NT−1
T [S ]]):.

In practice, in this definition we are removing from the classical notion of neigh-
borhood the edges that connect nodes that are at distance T from u (or S ) as the
graph that u (or S ) sees by moving T hops away does not include them.

Now we define some graph operations. Given any two graphs G and H, the
intersection of G and H is the graph G ∩ H = (V(G) ∩ V(H), E(G) ∩ E(H)). The
union of G and H is the graph G ∪ H = (V(G) ∪ V(H), E(G) ∪ E(H)), while the
difference between G and H is the graph G \ H = (V(G) \ V(H), E(G) \ E(H)).

An isomorphism between two graphs G and H is a function ϕ : V(G)→ V(H)
that is bijective and such that {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(H). In
case of directed graphs, we also require the isomorphism to keep edge orientation.

Labeling problems. In this brief survey we consider labeling problems, namely,
graph problems that ask to output some labels on the nodes of the graph. A formal
definition follows.

Definition 2.1 (Labeling problem). Let Σin,Σout be two alphabets, and I a set of
indices. A labeling problem Π is a mapping (G, in) 7→ {outi}i∈I that maps every
input graph G = (V, E) where nodes are labelled by any input function in : V →
Σin to a family of suitable output functions outi : V → Σout indexed by I. The
mapping is closed under graph isomorphism, that is, for any isomorphism ϕ :
V(G) → V(H) between two graphs G and H, out ∈ Π((H, in)) if and only if
out ◦ ϕ ∈ Π((G, in ◦ ϕ)).

The reader may notice that we defined labeling problems for any input graph,
despite the fact that some labeling problems might be defined only for some spe-
cific graph family like, for example, 3-coloring bipartite graphs. However, Defini-
tion 2.1 is general enough to capture all such problems, because one can just say
that, for graphs that are outside the right graph family (e.g., non-bipartite graphs),
all outputs are admissible. Examples of graph labeling problems are leader elec-
tion, consensus, diameter approximation, etc.

A subclass of labeling problems that is of particular interest in the distributed
computing community is that of locally checkable labeling (LCL) problems, al-
ready mentioned in the introduction. LCL problems were first introduced by Naor



and Stockmeyer [NS93] (for the journal version we refer to [NS95]). Here, we
report the original definition.

For any function f : A → B and any subset S ⊆ A, we denote the restriction
of f to S by f �S : S → B. We define a centered graph to be any pair (G, vG),
where G is a graph and vG ∈ V(G) is a node of G that we call the center of G. The
radius of a centered graph (G, vG) is the maximum distance between vG and any
other node of G. We are now ready to state the definition of LCL problems.

Definition 2.2 (Locally Checkable Labeling problem). Let r, ∆ be non-negative
integers. Let Σin,Σout be two finite alphabets, and I a finite set of indices. Consider
a labeling problem Π defined on Σin,Σout, I. Π is locally checkable with checking
radius r and maximum degree ∆ if there exists a family S =

{
((H, vH), in, out)i

}
i∈I

where each tuple ((H, vH), in, out)i contains a centered graph (H, vH) of radius at
most r and degree at most ∆, an input labeling function in : V(H) → Σin and an
output labeling function out : V(H)→ Σout with the following property:

• For every input (G, in) to Π with deg(G) ≤ ∆, an output vector out : V(G)→
Σout is admissible (i.e., out ∈ Π((G, in))) if and only if, for each node v ∈
V(G), the tuple

(
(G[NT [v]], v), in �NT [v], out �NT [v]

)
belongs to S.

S is also called the family of permissible outputs, and is finite (up to graph
isomorphisms) since ∆, r are finite and also Σin,Σout are finite sets. Notice that in
Definitions 2.1 and 2.2 we assumed that input and output labels are given to and
from nodes. We might similarly assume that they are given to and from edges,
and come up with other problems. In this survey, we will interchangeably use
both possibilities when it is convenient. LCL problems capture all problems de-
fined via local constraints, e.g., graph coloring, maximal independent set, maxi-
mal matching, sinkless orientation, triangle freeness, etc.

We now introduce the models of computations we are interested in. We begin
with the port-numbering model, and on top of it we define the LOCAL model of
computation [Lin92].

The port-numbering model. A port-numbered network is a triple N = (V, P, p)
where V is the set of nodes, P is the set of ports, and p : P → P is a func-
tion specifying connections between ports. Each element x ∈ P is a pair (v, i)
where v ∈ V , i ∈ N+. The connection function p between ports is an involu-
tion, that is, p(p(x)) = x for all x ∈ P. If (v, i) ∈ P, we say that (v, i) is port
number i in node v. With an abuse of notation, we say that the degree of a node
v in the network N is the number of ports in v and is denoted by degN(v). We
assume that port numbers are consecutive, i.e., the ports of any node v ∈ V are
(v, 1), . . . , (v, degN(v)). Clearly, a port-numbered network identifies an underlying
graph G = (V, E) where, for any two nodes u, v ∈ V , {u, v} ∈ E if and only if there



exists ports xu, xv ∈ P such that p(xu) = xv. Here, the degree of a node degN(v)
corresponds to degG(v).

In the port-numbering model we are given a distributed system consisting of
a port-numbered network of |V | = n processors (or nodes) that operates in a se-
quence of synchronous rounds. In each round the processors may perform un-
bounded computations on their respective local state variables and subsequently
exchange messages of arbitrary size along the links given by the underlying in-
put graph. Nodes identify their neighbors by using ports as defined before, where
the port assignment may be done adversarially. Barring their degree, all nodes
are identical and operate according to the same local computation procedures.
Initially all local state variables have the same value for all processors; the sole
exception is a distinguished local variable x(v) of each processor v that encodes
input data (that is, port numbers, degree, possible input from the problem itself,
etc.). Usually, we assume that x(v) also encodes the number of nodes n composing
the distributed system.

Let Σin be a set of input labels. The input of a problem is defined in the form
of a labeled graph (G, in) where G = (V, E) is the system graph, V is the set
of processors (hence it is specified as part of the input), and in : V → Σin is an
assignment of an input label in(v) ∈ Σin to each processor v and is encoded in
x(v). The output of the algorithm is given in the form of a function of output
labels out : V → Σout, and the algorithm is assumed to terminate once all labels
out(v) are definitely fixed. We assume that nodes and their links are fault-free.
The local computation procedures may be randomized by giving each processor
access to its own set of random variables; in this case, we are in the randomized
port-numbering model as opposed to the deterministic port-numbering model.

The running time of an algorithm is the number of synchronous rounds re-
quired by all nodes to produce output labels. If an algorithm running time is T ,
we also say that the algorithm has locality T . Notice that T can be a function of
the size (or other parameters) of the input graph. We say that a problem Π over
some graph family F has complexity (or locality) T in the port-numbering model
if there is a port-numbering algorithm running in time T that solves Π over F , and
T = T (n) is the minimum running time (among all possible algorithms that solve
Π over F ) in the worst case instance of size n. If the algorithm is randomized, we
also require that the failure probability is at most 1/poly(n), where n is the size of
the input graph.

We remark that the notion of an (LCL) problem is a graph problem, and does
not depend on the specific model of computation we consider (hence, the problem
definition cannot depend on, e.g., port numbers).



The LOCAL model. The LOCAL model of computation is just the port-numbering
model augmented with an assignment of unique identifiers to nodes. Let c ≥ 1 be
a constant. The nodes of the input graph G = (V, E) are given as input also unique
identifiers specified by an injective function id : V → [nc]. This assignment might
be adversarial and is stored in the local state variable x(v), and nodes can exploit
these values during their local computation.

The local computation procedures may be randomized by giving each pro-
cessor access to its own set of random variables; in this case, we are in the ran-
domized LOCAL (rand-LOCAL) model as opposed to the deterministic LOCAL
(det-LOCAL) model. If the algorithm is randomized, we also require that the fail-
ure probability while solving any problem is at most 1/poly(n), where n is the size
of the input graph. The definition of running time, locality and complexity easily
extends from the port-numbering model to the LOCAL model.

On top of the LOCAL model, it is easy to describe its quantum generalization.
In order to avoid the math of quantum mechanics, we only provide an informal
definition of the quantum-LOCAL model. For a formal definition, we defer the
reader to [GKM09].

The quantum-LOCAL model. The quantum-LOCAL of computing is simi-
lar to the deterministic LOCAL model above, but now with quantum computers
and quantum communication links. More precisely, the quantum computers ma-
nipulate local states consisting of an unbounded number of qubits with arbitrary
unitary transformations, the communication links are quantum communication
channels (adjacent nodes can exchange any number of qubits), and the local out-
puts can be the result of any quantum measurement.

Relations between models. We say that a computational model A is stronger
than a computational model B if an algorithm with locality T running in A can
be simulated by an O(T )-round algorithm in B. Clearly, det-LOCAL is stronger
than the port-numbering model, rand-LOCAL is stronger than det-LOCAL, and
quantum-LOCAL is stronger than rand-LOCAL. We suggest the reader has Fig. 1
at hand to keep track of the models and their relations while we introduce them.
We will define the other models present in Fig. 1 later in the related sections.

3 The non-signaling model
As mentioned in the introduction, to date we do not have direct ways to prove
lower bounds in quantum-LOCAL. Specific procedures that are commonly used
in the LOCAL model such as round elimination [Bra19] do not generalize to
quantum-LOCAL (regarding this, we argue more later in Section 6.2). However,
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Figure 1: Landscape of computational models. An arrow between model X and
Y , that is X → Y means that model Y is stronger than model X, unless otherwise
specified. Black arrows are trivial implications (by construction), blue arrows are
known results, and red arrows are recent results.

some general arguments based on the non-signaling principle do generalize to
quantum-LOCAL and actually holds more in general. Before going through spe-
cific definition, let us introduce the no-signaling principle via two examples on the
same problem: 2-coloring even cycles both in det-LOCAL and in rand-LOCAL.

3.1 Warm-up: 2-coloring cycles in classical LOCAL
Let n ∈ N be an even number and consider a cycle Cn with n nodes.

First example: indistinguishability argument (within the input graph family).
The indistinguishability argument in the LOCAL model relies on the fact that a
node, by accessing its local view, cannot distinguish between proper inputs that
are indistinguishable in the local neighborhood but differ outside and, for which,
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(a) Indistinguishability argument within the same input graph family. The two highlighted
nodes cannot distinguish between the case in which they have even (in C′n) or odd (in C′′n )
distance between each other.

radius T = n
2 − 2

(b) Graph-existential argument: outside the input graph family. The red nodes cannot
distinguish whether they are in an even or an odd cycle.

Figure 2: The no-signaling principle illustrated in the problem of 2-coloring cy-
cles.



the node must behave in different ways. For example, the bipartitness of an even
cycle is a very rigid property: if the radius-T neighborhoods of two distinct nodes
in a cycle do not intersect, the nodes cannot guess if they are in the same set of the
bipartition or not. More formally, assume that there is a det-LOCAL algorithmA
that 2-colors Cn in time T = d(n − 2)/4e − 1. Consider two nodes u1, u2 that are
at distance at least 2 d(n − 2)/4e − 1 between each other. Their radius-T neighbor-
hoods do not intersect, hence there is no way to coordinate in case their distance
is odd (which implies different colors) or even (which implies the same color).
One can instantiate two input graphs C′n and C′′n in which the distance between u1

and u2 is even and odd, respectively. However, when running A the output must
be the same, leading to a contradiction (see Fig. 2a). This argument gives a lower
bound of d(n − 2)/4e − 1 to the problem. As for rand-LOCAL, simply notice that,
in the worst case, the two nodes u1 and u2 cannot produce the correct output with
probability more than 1/2.

Second example: graph-existential argument (outside the input graph fam-
ily). Graph-existential arguments are another key technique to prove lower bounds
in classical LOCAL. The idea is the following: Suppose we have an LCL prob-
lem that assume that the input graph family satisfies some key-property (in this
case, bipartite cycles). Assume also that one can find a graph that locally looks
like a proper input, but lies outside the input graph family (e.g., an odd cycle).
In this way, one can exploit the fact that, if the locality T of the algorithm solv-
ing the problem is not large enough to detect that the graph is not proper, then
the algorithm must run and produce some local failure (e.g., two monochromatic
nodes). We can now take a copy of the radius-T neighborhood of the failing nodes
and construct a proper input that contains this copy. Since the nodes do not dis-
tinguish in which input (proper or not) they are in, they must produce the same
output, leading to the failure of the algorithm in a proper instance (see Fig. 2b).
Formally, assume that there is a det-LOCAL algorithmA that 2-colors Cn in time
T = n/2 − 2. Consider now a second graph G of n nodes that is the disjoint union
of a cycle Cn−1 with n − 1 nodes and a single node with no edges. Run A in G:
the nodes in Cn−1 will not notice that they are in an odd cycle since the radius-T
neighborhood of any node leaves out 2 nodes. Hence, the nodes must output some
color and, since Cn−1 is not 2-colorable, there must be a failure somewhere, that
is, two adjacent nodes u1, u2 share the same color. We can now construct an even
cycle Cn that contains a subgraph isomorphic to Cn−1[NT [{u1, u2}]], with the same
input data (that is, identifiers and port numbers). Since the isomorphic copies of
u1, u2 in Cn cannot distinguish if they are in Cn or in Cn−1 when running A, they
must produce the same failure, contradicting the hypothesis that A was correct.
This argument gives a lower bound of n/2 − 2 for 2-coloring even cycles with n



nodes.
When we allow randomness, things are a bit more complex. Indeed, the fail-

ure in Cn−1 is random and when we look at two specific adjacent nodes, in the
worst case, the probability of a failure (i.e., a monochromatic edge) can be as
small as 1/poly(n). However, we can do something different. Let u1, . . . , un−1 be
the nodes of Cn−1, where {ui, ui+1} is an edge for i = 1, . . . , n − 2, and {u1, un−1} is
another edge. Consider two subgraphs G,H of Cn−1 defined as follows: V(G) =

{u1, . . . , un/2}, V(H) = {un/2, . . . , un−1}. Now assume A is a rand-LOCAL algo-
rithm that 2-colors even cycles of n nodes in time T = d(n − 2)/4e − 1, and run
A in Cn−1 (plus one disjoint singleton node to make the number of nodes equal
to n). Again, since locality T is not sufficient for the nodes of Cn−1 to understand
that they are not in an even cycle, there must be a failure in at least two adjacent
nodes u, v at every run of A. Since G ∪ H = Cn−1, in at least one of them there
is probability no less than 1/2 that a failure takes place. Wlog, assume G is such
subgraph. Then, one can construct an even cycle of n nodes that contains as in-
duced subgraph a copy of C̊n−1[NT [V(G)]] and give as input the same identifiers
and port numbers. Since the view of the nodes of the copy of G in Cn is indis-
tinguishable from the view of the nodes of G in Cn−1, they must reproduce the
same failure probability. Hence, we get that any algorithm that 2-colors cycles
in rand-LOCAL with locality at most T = d(n − 2)/4e − 1 fails with probability
at least 1/2. Notice that we could consider more subgraphs of Cn and get lower
bounds with higher locality but smaller failure probability.

Randomized LOCAL: boosting the failure probability. In rand-LOCAL, we
can also boost the failure probability at the cost of worsening the locality of the
lower bound, by simply repeating the experiment many times. We only focus on
the graph-existential argument, but a similar approach holds for the other argu-
ment as well. We assume that the overall amount of nodes is now n = m · N
for two positive integers m,N where m is odd and N is even. Assume now
that we have an algorithm A that 2-colors even cycles of n nodes with local-
ity T = d(m − 2)/4e − 1 = d(n/N − 2)/4e − 1. Now consider N disjoint copies
C(1)

m , . . . ,C(N)
m of an odd cycle Cm with m nodes. For each C(i)

m , the same argument as
before holds, and we can identify a subgraph Gi of each C(i)

m where a failure takes
place with probability at least 1/2 independently of the others, and such that the
radius-T neighborhood of V(G) still leaves at least one node of C(i)

m out. Now we
can construct a proper input Cn that contains, as induced subgraphs, a copy of each
C(i)

m [NT (V(Gi))]. By independence, the failure probability here is at least 1 − 1
2N .

Hence, any algorithm 2-coloring even cycles with locality T = d(n/N − 2)/4e − 1
fails with probability at least 1 − 1

2N . See Fig. 3 for a visual explanation.
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Figure 3: Visual representation of the failure probability boost: We take two odd
cycles C(1)

m and C(2)
m and subdivide the nodes in two slightly overlapping regions

(the colored dashed regions). For T =
⌈

m−2
4

⌉
− 2, a T -round algorithmA must fail

both in C(1)
m and C(2)

m (it does not catch that we are in odd cycles). For each cycle,
in at least one region A must fail with probability at least 1/2. Wlog, we assume
that this happens in the red and the blue regions. Now we create a new cycle Cn

with n = 2m nodes where we copy the radiusT neighborhoods of the red and the
blue region, and we add the remaining nodes. The failing probability of A over
Cn is, by independence, at least 3/4, and we get a lower bound on the locality of
magnitude T =

⌈
n−4

8

⌉
− 2.

3.2 The no-signaling principle

The lower bound techniques in Section 3.1 rely on a crucial assumption, which
is quite intuitive when dealing with classical LOCAL. First, let us introduce the
notion of view of a subset of nodes.

For any input distributed network (G, x) to any problem, and any subset of
nodes S ⊆ V(G), the radius-T view of S is VT (S ) = (G̊[NT [S ]], x �NT [S ]). Ba-
sically, VT (S ) includes everything that can be seen by the nodes in S with T
rounds of communication, including input data (degree, ports, identifiers and in-
put labels—if any, etc.). Suppose G has n nodes, and fix any subset of nodes
S ⊆ V(G). Given any two graphs G,H with inputs xG, xH and any two subset
of nodes S G ⊆ V(G) and S H ⊆ V(H), it is natural to define the notion of isomor-
phism between views. We say thatVT (S G) is isomorphic toVT (S H) if there exists
a function ϕ : V(G)→ V(H) such that the folowwing holds:



1. ϕ �S G is an isomorphism between G[S G] and H[S H]

2. ϕ �NT [S G] is an isomorphism between G̊[NT [S G]] and H̊[NT [S H]];

3. xG(u) = xH(ϕ(u)).

Consider any T -round (deterministic or randomized) LOCAL algorithmA run
by the nodes of G. Imagine that the distributed network is split in two different lab-
oratories, Alice’s and Bob’s. Alice’s lab containsV0(S ), while Bob’s lab contains
everything that is not contained inVT (S ). When performing T rounds of commu-
nication, Alice’s lab receive no information from Bob’s lab. Hence, the behavior
of the output distribution over nodes in Alice’s lab cannot change whatever Bob
does in his lab, including rearranging links between nodes or manipulating inputs.
The cause of outputs in Alice’s lab cannot be influenced by any action of Bob in
his lab. See Fig. 4 for a visual representation of the property.1 This property is the
so-known no-signaling from the future principle in physics, which states that no
signals can be sent from the future to the past, and is equivalent to the causality
principle [DCP16]. Such principle holds in every physical distributed network
running any kind of synchronous distributed algorithm, including quantum ones.

To see how this principle formally translates in our setting, let us define the
notion of outcome, which is some kind of generalization of an algorithm. Here, we
restrict to finite sets of input and output labels since we focus on LCL problems.

Definition 3.1 (Outcome). Let Σin,Σout be two finite sets of labels, and I a finite
set of indices. An outcome is a mapping O : (G, x) 7→ {(outi : V(G)→ Σout, pi)}i∈I

that assigns to every input distributed network (G, x) (with any input labeling in :
V(G) → Σin) a distribution over output labelings {(outi : V(G) → Σout, pi)}i∈I ,
where pi is the probability that outi occurs; in particular, 0 ≤ pi ≤ 1 and

∑
i∈I pi =

1.

This definition is easily generalizable to the case of infinite label sets, but
we avoid it for the sake of simplicity. Notice that all synchronous distributed
algorithms gives r outcomes: it is just the assignment of an output distribution (the
one that is the result of the algorithmic procedure) to the input graph. We remark
we have defined the domain set of outcomes to include all possible graphs. This is
not restrictive: Even classical (or quantum) algorithms can run on every possible
graph. One can just introduce some garbage output label so that whenever a node

1Formally, Bob’s lab also contains edges that are in E(G[NT [S ]]) \ E(G̊[NT [S ]]), but does not
contain the nodes in NT−1

T [S ]. We can imagine that Bob sees the ports of edges that are not in
VT (S ), but nothing else, and is constrained to assign edges to those ports. In Fig. 4 Bob would
have the freedom to modify such edges in the red region as well, but we avoid representing this
aspect for the sake of simplicity.



G H

Figure 4: No-signaling property. Alice’s lab contains the red nodes, Bob’s lab
contains the blue nodes. By running any 2-rounds synchronous distributed algo-
rithm, the red nodes cannot distinguish between G and H: Bob has freedom to
change the topology outside the red region without being detected by Alice.

running an algorithm needs to do something that is not well-defined (given its
neighborhood), it can just output the garbage label.

We say that an outcome O solves a problem Π over a family of graphs F with
probability q > 0 if, for every G ∈ F and every input data x, it holds that∑

i∈I:
outi∈Π((G,x))

pi ≥ q.

Let O : (G, x) 7→ {(outi, pi)}i∈I be any outcome and fix an input (G, x). Con-
sider any subset of nodes S ⊆ V(G). The restriction of the output distribution
O((G, x)) = {(outi : V(G) → Σout, pi)}i∈I to S is the distribution {(out j : S →
Σout, p′j)} j∈J such that

p′j =
∑
i∈I:

out j=outi�S

pi,

and is denoted by O((G, x))[S ] or {(outi, pi)}i∈I[S ]. We also say that two labeling
distributions {(outi : V(G)→ Σ, pi)}i∈I , {(out j : V(H)→ Σ, p j)} j∈J over two graphs
G,H are isomorphic if there is an isomorphism ϕ : V(G)→ V(H) between G and
H such that {(outi : V(G)→ Σ, pi)}i∈I = {(out j ◦ ϕ : V(G)→ Σ, p j)} j∈I .

We are now ready to define non-signaling outcomes.



Definition 3.2 (Non-signaling outcome). Let O be any outcome. Fix any two
graphs G,H of n nodes and any two input data functions xG, xH. Suppose there ex-
ists a non-negative integer T ≥ 0 with the following property: For any two subsets
S G ⊆ V(G), S H ⊆ V(H) such that ϕ : V(G) → V(H) is an isomorphism between
VT (S G) andVT (S H), then the restrictions O((H, xH))[S H] and O((G, xG))[S G] are
isomorphic under ϕ. We say that O is non-signaling beyond distance T or, alter-
natively, that O has locality T .

With this notion, we can define the non-signaling model.

The non-signaling model. The non-signaling model is a computational model
which produces non-signaling outcomes. More specifically, the distributed net-
work in input (G, x) is as in the definition of the deterministic LOCAL model,
with x(v) encoding the degree of a node, port numbers, the identifier and (possi-
bly) an input label expected by the problem of interest. The model can produce
non-signaling outcomes where one wants to minimize the locality T to solve the
problem. Usually, we require that the success probability of an outcome that
solves a problem is at least 1 − 1/poly(n).

The non-signaling model was first introduced by Gavoille, Kosowski, and
Markiewicz [GKM09] with a slightly different definition, and then formalized by
Arfaoui and Fraigniaud [AF14] in the current form. It is stronger than any physical
synchronous distributed computing model, as T -rounds synchronous distributed
algorithms (both classical and quantum) obey the no-signaling principle and must
produce outcomes that are non-signaling beyond distance T . [GKM09] was the
first to observe that lower bounds in the non-signaling model must hold in all
weaker models, and noticed that lower bound techniques based on the indistin-
guishability argument withing the input graph family still hold in non-signaling.
More specifically, [GKM09] revisited some previous lower bound results and no-
ticed that they hold also in the non-signaling model, and it also established a new
lower bound for 2-coloring even cycles, revisiting the first argument on indistin-
guishability shown in Section 3.1.

Theorem 3.3 (Gavoille, Kosowski, and Markiewicz [GKM09]). In the non-signaling
model, the following holds:

1. Maximal independent requires locality Ω

(√
log n

log log n

)
[KMW04].

2. Locally minimal (greedy) coloring requires locality Ω
(

log n
log log n

)
[Gav+07;

Gav+09].

3. Finding a connected subgraph with O
(
n1+1/k

)
edges requires locality Ω(k)

[Der+08; Elk07].



4. Finding a 2-coloring in even cycles requires locality Ω
(⌈

n−2
4

⌉)
.

We remark that [GKM09] had a slight different definition of the non-signaling
model. In the paper, the model was called ϕ-LOCAL and defined outcomes to ex-
ist only on a specific input graph family. When considering, e.g., the problem of
2-coloring even cycles, the outcome produced by ϕ-LOCAL were defined only for
even cycles, leaving out the possibility to play with graphs outside the input graph
family. However, as previously mentioned, (classical or quantum) algorithms can
be run also on network graphs that lie outside the input graph family: If com-
putation is at any point undefined, we can let a node output some garbage label.
This freedom that we have with algorithms is what we exploit in the second lower
bound argument in Section 3.1, the graph-existential one. By defining outcomes
on every possible input graph, we have access to new lower bound techniques. In
[Coi+24], we proved that the graph-existential argument can be extended all the
way up to the non-signaling model (under some general hypotheses), and used it
to prove the following lower bounds.

Theorem 3.4 (Coiteux-Roy et al. [Coi+24]). In the non-signaling model, the fol-
lowing holds:

1. The problem of c-coloring χ-chromatic graphs requires locality Ω

(
n1/

⌊
c−1
χ−1

⌋)
.

2. Finding a 3-coloring n × m grids requires locality min{n,m}.

3. Finding a c-coloring of trees requires locality logc n.

The three results of Theorem 3.4 make use of cheating graphs, that is, of
graphs that are locally everywhere indistinguishable from proper inputs, but glob-
ally they are not in the input family. E.g., for c-coloring χ-chromatic graphs we
need to find a graph such that the radius-T neighborhood of any node induces a

graph that is χ-colorable, for T = Θ

(
n1/

⌊
c−1
χ−1

⌋)
, but globally the graph has chro-

matic number strictly greater than c. The existence of such graph immediately

implies that deterministic LOCAL algorithms require locality Ω

(
n1/

⌊
c−1
χ−1

⌋)
to solve

the problem. Such graph is given, for all combinations of c and χ, by Bogdanov
[Bog13]: this was the first time that Bogdanov’s construction found application in
distributed computing and, more in general, theoretical computer science. Inter-
estingly, in [Coi+24] the authors proved an almost matching upper bound for the
problem in det-LOCAL, thus excluding any significant quantum advantage over
det-LOCAL for this problem. As for 3-coloring grids, we made use of odd quad-
rangulations of Klein-bottles [MS02], which are everywhere locally indistinguish-
able from grids, but have global chromatic number, while for c-coloring trees we



revisited Linial’s argument in [Lin92] that made use of Ramanujan graphs, which
are high-girth, high-chromatic graphs [MST13]. When looking at rand-LOCAL
and the non-signaling model, we need to make sure that the graph can be nicely
covered by a small amount of subgraphs (whose union form the whole graph) that
are slightly overlapping, in order to identify a subgraph where the failure proba-
bility is high enough. In general, boosting the failure probability is possible also
in the non-signaling model. However, we cannot rely on the same argument of
Section 3.1 as a non-signaling outcome does not guarantee independence between
the output distributions of far-away subsets of nodes (which instead is guaranteed
by rand-LOCAL algorithms). The reason is that non-signaling outcomes include
the possible use of global resources, such as shared randomness or shared quan-
tum states. Such resources make output distributions of distant nodes dependent
of each other, even if their distance is greater than the locality of the algorithm
itself. Nonetheless, boosting the failure probability is still possible provided that
the cheating graph meets some properties. For more details, we defer the reader
to the original article [Coi+24].

All this discussion might suggest that non-signaling argument are sufficient to
exclude quantum advantage, and hence gives rise to the following question:

Question 1. Can we exclude quantum advantage for all LCL problems using non-
signaling arguments?

Unfortunately, the answer to this question is no. Indeed, the non-signaling
model is too strong to compare with classical LOCAL. For example, very recently
Balliu et al. [Bal+24] solved a longstanding open problem, proving that shared
randomness gives advantage over private randomness in classical LOCAL when
restricting to LCL problems (otherwise, the thesis is trivial). More specifically,
there is an LCL problem that requires Ω

(√
n
)

rounds in rand-LOCAL but can be
solved in O

(
log n

)
rounds when nodes have access to shared randomness (e.g., an

infinite random bit string). Since the non-signaling model is strong enough to sim-
ulate LOCAL with shared randomness, we already know that it is too strong with
respect to classical LOCAL and there is no hope to prove something like Ques-
tion 1. However, it is worth investigating to what extent lower bound arguments
based on the non-signaling property apply, since we still miss a characterization.

Question 2 (Open). For which LCL problems can we exclude quantum advantage
using non-signaling arguments?

4 The bounded-dependence model
To avoid dealing with shared resources, we can weaken the non-signaling model
by introducing further restrictions on the non-signaling outcomes. Running T -
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Figure 5: Bounded-dependence property. When running any 2-round synchronous
distributed algorithm (which does not rely on shared resources), the output label-
ing distribution of the red nodes is independent of that of the blue nodes.

rounds classical or quantum-LOCAL algorithms without shared resources, we
obtain the following property on the output labeling distribution: for every two
subset of nodes A, B such that dist(A, B) > 2T , then the output distributions re-
stricted to A and B are independent (see Fig. 5). Let us formalize this notion.

Definition 4.1 (T -dependent distribution). Let Σout and I be two sets, and let (G, x)
be an input for some labeling problem Π. An output labeling distribution {(outi :
V(G) → Σout, pi)}i∈I is T -dependent if, for any two subsets of nodes A, B ⊆ V(G),
we have that {(outi, pi)}i∈I[A] is independent of {(outi : V(G)→ Σout, pi)}i∈I[B].

We can think now of non-signaling outcomes that produces such distributions.

Definition 4.2 (Bounded-dependent outcome). Let O be any outcome that is non-
signaling beyond distance T . We say that O is bounded-dependent with locality
T if for any input (G, x) we have that O((G, x)) is 2T -dependent. Furthermore,
when T = O(1) (i.e., it does not depend on the input graph), we say that O((G, x))
is a finitely-dependent distribution. Moreover, if for all inputs (G, x) it holds that
O((G, x)) does not depend on identifiers and port numbers, we say that O is in-
variant under subgraph isomorphism.



With the addition of this further property, we can define the bounded-dependence
model, first formalized in [Akb+25].

The bounded-dependence model. Similarly to the introduction of the non-
signaling model, we can define the bounded-dependence model as a model that
produces bounded-dependent outcomes. Again, the required success probability
then solving a problem should be at least 1 − 1/poly(n).

One might hope that we can prove lower bounds in the bounded-dependence
model and matching upper bounds in classical LOCAL.

Question 3. Can we always rule out quantum advantage for LCLs using bounded-
dependent outcomes?

Unfortunately, the answer to Question 3 is no: Holroyd and Liggett [HL16]
and Holroyd, Hutchcroft, and Levy [HHL18] proved it for us. It is well-known
that 3-coloring paths and cycles requires locality Θ

(
log? n

)
both in det-LOCAL

and in rand-LOCAL [Lin92; CKP16]. [HL16; HHL18] showed that these prob-
lems admit finitely-dependent distributions, that is, it is possible to 3-color path
and cycles with an O(1)-dependent outcome that is invariant under subgraph iso-
morphism and under permutations of the colors.

Apart from 3-coloring paths and cycles, there are other famous problems in the
complexity class Θ

(
log? n

)
, such as computing an MIS, (∆ + 1)-coloring graphs

of maximum degree ∆, etc.
All such problems are also called symmetry-breaking problems, in the sense

that they are easily solvable by an O(1)-round port-numbering algorithm (and
without knowledge of n) if symmetry is locally broken with a constant amount
of labels. This fact implies that, given any two LCLs Π1,Π2 that have complex-
ity Θ

(
log? n

)
in some graph G, a solution to any of those problems can be con-

verted into a solution of the other in a constant number of rounds. In [Akb+25],
the authors proved it is possible to compose port-numbering algorithms (that
do not make use of n) and bounded-dependent outcomes obtaining a bounded-
dependent outcome (without significant loss in locality). Hence, the results in
[HL16; HHL18] immediately imply that in paths and cycles all LCL problems
that have classical complexity Θ

(
log? n

)
are solvable by an O(1)-dependent out-

come in the bounded-dependence model as well: but what about other graphs?

Question 4. Is there any LCL problem with classical complexity Θ
(
log? n

)
for

which we can rule out quantum advantage using the bounded-dependence model?

Unfortunately the answer is, again, no. Akbari et al. [Akb+25] proved that all
such problems are solvable with locality O(1) in the bounded-dependence model,
and the resulting bounded-dependent outcomes are also invariant under subgraph
isomorphism.



Theorem 4.3 (Akbari et al. [Akb+25]). Let Π be an LCL over some input graph
family F that has complexity O

(
log? n

)
in classical LOCAL. Then, there exists an

O(1)-dependent outcome O that solves Π over F . Furthermore, O is invariant
under subgraph isomorphism.

Theorem 4.3 is powerful result that shows the power of finitely-dependent
distributions: such distributions are able to break symmetry with constant locality,
that is something that classical LOCAL cannot do. This leaves us with one of the
major open question in the field.

Question 5 (Open). Is quantum-LOCAL able to break symmetry in LCLs? That
is, can quantum-LOCAL solve in time o

(
log? n

)
any LCL Π that has classical

complexity Θ
(
log? n

)
?

We currently lack tools to analyze directly quantum-LOCAL (especially re-
garding lower bounds). What we can do is instead focusing on specific graph
families and/or specific complexity classes in the bounded-dependence or non-
signaling model. In classical (both deterministic and randomized) LOCAL, LCL
complexities belong to the following three classes: O(1), Θ

(
log? n

)
, and Ω

(
log log n

)
.

After Theorem 4.3, we might wonder what happens in the complexity class Ω
(
log log n

)
.

Question 6 (Open). In the bounded-dependence model and the non-signaling,
what can we infer on the complexity of LCL problems that have classical com-
plexity Ω

(
log log n

)
?

One of the most prominent problems is maybe sinkless orientation (SO), a
problem that asks each node v to orient its adjacent edges so that outdeg(v) ≥ 1.
It is known that SO has complexity Θ

(
log n

)
in det-LOCAL and Θ

(
log log n

)
in

rand-LOCAL [Bal+23b]. Hence, we can formulate the following question, which
is nowadays open.

Question 7 (Open). What is the complexity of sinkless orientation in the bounded-
dependence model or the non-signaling model?

Currently, we have little insight on these questions, but we managed to give
some small partial answers to Question 6, which we address in the following
section.

5 The online-LOCAL model
In this section, we describe other models of computation that, at a first glance,
seem completely unrelated from the (super)quantum world we have been describ-
ing so far, but after a deeper look turn out to be related and extremely useful. In
[GKM17], Ghaffari, Kuhn, and Maus introduced the SLOCAL model, that is, a
sequential version of the LOCAL model.



The SLOCAL model. The SLOCAL model is similar to the LOCAL model,
but sequential. Here, the nodes of the input graph G = (V, E) with |V | = n are
processed according to an adversarial order σ = v1, . . . , vn. While processing a
node vi, a T -round algorithm collects all data contained in and the topology of the
radius-T neighborhood of vi (including the states and the outputs of previously
processed nodes in NT [vi], i.e., any node v j ∈ NT [vi] for j < i): We say that such
an algorithm has locality/complexity/running time T . Note that the algorithm
might store the whole data contained in VT (vi) inside the memory of vi (and we
always assume this happens, since it can only make the algorithm stronger). This
phenomenon gives to a node vi access to the data contained inVT (v j) if and only
if there is a subsequence of nodes {vhk}k∈[m] with j = hk < hk+1 < · · · < hm = i such
that vhk ∈ NT [vhk+1] for all k ∈ [m − 1].

If the algorithm is given in input an infinite random bit string, we talk about the
randomized SLOCAL model, as opposed to the deterministic SLOCAL model.
Notice that the adversarial order in which node are processed is assumed to be
oblivious to the random bit string. In this case, we require the success probability
to be at least 1 − 1/poly(n), with n being the number of nodes of the input graph.

Clearly, the SLOCAL model is stronger than the LOCAL model, since any
deterministic T -round LOCAL algorithm can be converted into a deterministic
T -round SLOCAL algorithm. Surprisingly, Ghaffari, Harris, and Kuhn [GHK18]
proved that also any randomized T -round LOCAL algorithm can be converted into
a deterministic O(T )-round SLOCAL algorithm through some derandomization
technique. Interestingly, [GKM17] proved that, under certain hypotheses, (both
randomized and deterministic) SLOCAL algorithms can be converted in (respec-
tively, randomized and deterministic) LOCAL algorithms with some overhead in
the complexity. However, for our purposes it is sufficient to know that O(1)-round
SLOCAL algorithms for LCLs can be turned into O

(
log? n

)
-round LOCAL algo-

rithms: this is folklore, but a proof can be found in [Akb+25]. See Fig. 1 for a
representation of the relations among models.

On top of the SLOCAL model, Akbari et al. [Akb+23] introduced the online-
LOCAL model. The online-LOCAL model is simply the SLOCAL model equipped
with global memory.

The online-LOCAL model. The (deterministic) online-LOCAL model is basi-
cally equivalent to the SLOCAL model with global memory. More specifically,
the online-LOCAL model is a centralized model of computing where the algo-
rithm initially knows only the set of nodes of the input graph G. The nodes are pro-
cessed with respect to an adversarial input sequence σ = v1, v2, . . . , vn. The out-
put of vi depends on Gi = ∪i

j=1VT (v j), i.e., the radius-T views of of v1, v2, . . . , vi

(which includes all input data), plus all the outputs of previously processed nodes



(we can imagine that the views get updated at each step of the algorithm).
In [Akb+25], the authors defined the randomized online-LOCAL model as a

randomized variant of the online-LOCAL model where the label assigned by the
algorithm to vi might depend on arbitrarily large portions of an infinite random bit
string. Note that this model is oblivious to the randomness used by the algorithm.
In particular this means that the graph outside Gi cannot be changed depending
on the label assigned to vi. One could also define the randomized online-LOCAL
model in an adaptive manner, but it turns out that this is equivalent to the determin-
istic online-LOCAL model (as proved in [Akb+25]). The notion of complexity
of a problem can be easily extended from the LOCAL model. If the algorithm
is randomized, we also require that the failure probability is at most 1/poly(n),
where n is the size of the input graph.

Interestingly, [Akb+23] proved that in rooted regular trees LCLs have roughly
the same complexity across the three deterministic models LOCAL, SLOCAL,
and online-LOCAL.

So, why should we care about the online-LOCAL model? Akbari et al. [Akb+25]
found a very important connection with the non-signaling model, which we report
here with the following theorem: in [Akb+25] the result is stated only for LCL
problems, but the proof holds also for any labeling problem.

Theorem 5.1 (Akbari et al. [Akb+25]). Let Π be any labeling problem and O any
non-signaling outcome with locality T solving Π with probability p > 0. Then,
there is a randomized online-LOCAL algorithm A with locality T that solves Π

with probability p. Furthermore, the output distribution ofA over any input (G, x)
is exactly O((G, x)).

Theorem 5.1 is very powerful, as it allows us to focus on classical, centralized
models of computing: every lower bound in randomized online-LOCAL holds
also in non-signaling and, hence, in quantum-LOCAL. Surprisingly, [Akb+25]
proved even more results regarding the online-LOCAL model that connects it
with the classical LOCAL model.

In order to introduce it, we need to define component-wise online-LOCAL
algorithms.

The component-wise online-LOCAL model. The component-wise online-LOCAL
model is exactly the same as the deterministic online-LOCAL model but when the
algorithm processes a node vi according to the adversarial order σ = v1, . . . , vn, vi

does not have access to the whole Gi. Rather, it has access only to its connected
component in Gi. Clearly a component-wise online-LOCAL algorithm is also a
standard online-LOCAL algorithm, hence the model is weaker than the determin-
istic online-LOCAL model (see Fig. 1 for a landscape of all the computational
models). However, we have the following result.



Theorem 5.2 (Akbari et al. [Akb+25]). Let Π be any LCL problem, and letA be
any online-LOCAL algorithm solving Π with locality T (n) for graphs of n nodes.
Then the following holds:

1. IfA is deterministic, then there exists a deterministic component-wise online-
LOCAL algorithm solving Π with locality T (2O(n3)).

2. If A is randomized and has success probability p(n) > 0, then there exists
a deterministic component-wise online-LOCAL algorithm solving Π with

locality T
(
2O(n3) + 2O(2n2

) · log 1
p(n)

)
.

5.1 Implications in rooted trees
Why is Theorem 5.2 so meaningful? The difference between online-LOCAL and
SLOCAL is local vs global memory. Component-wise online-LOCAL algorithms
lie somewhere in the middle: a node gets access only to the memory contained
in the currently explored connected component. Interestingly, in some topologies,
the SLOCAL model is able to “simulate” component-wise online-LOCAL algo-
rithms. We remind the reader that a rooted tree is a directed tree where all nodes
have outdegree 1 except for a single node v that has outdegree 0 and is called the
root of the tree.

Theorem 5.3 (Akbari et al. [Akb+25]). Let Π be any LCL problem over rooted
trees. Assume A is a component-wise online-LOCAL algorithm solving Π with
locality T (n). Then, there exists a deterministic SLOCAL algorithm solving Π

with locality O(1) + T (O(n)).

Now we can go from (deterministic or randomized) online-LOCAL to SLO-
CAL in rooted trees. Interestingly, [Akb+25] also proved that LCLs over rooted
trees in SLOCAL have complexity either O(1) or Ω

(
log n

)
.

Theorem 5.4 (Akbari et al. [Akb+25]). Let Π be any LCL problem over rooted
trees. AssumeA is an SLOCAL algorithm solving Π with locality o

(
log n

)
. Then,

there exists another SLOCAL algorithm B solving Π with locality O(1).

It is folklore that LCLs that have complexity O(1) in SLOCAL over any topol-
ogy translate in complexity O

(
log? n

)
in classical LOCAL. Altogether, we have

the following.

Corollary 5.5 (Akbari et al. [Akb+25]). Let Π be any LCL problem over rooted
trees. Then the following holds:

1. If Π has complexity o
(
log log n

)
in deterministic online-LOCAL, then it has

complexity O
(
log? n

)
in LOCAL.



2. If Π has complexity o
(
log log log n

)
in randomized online-LOCAL, then it

has complexity O
(
log? n

)
in LOCAL.

See also Fig. 1 for a drawing of all the implications among models. Corol-
lary 5.5 is very powerful in a twofold sense. On one hand, it implies that the LCL
complexity class O

(
log? n

)
in quantum-LOCAL and in LOCAL coincide over

rooted trees, excluding significant quantum advantage (it might still be that O(1)
locality in quantum-LOCAL becomes Θ

(
log? n

)
in LOCAL). Also, the LCL com-

plexity class O(1) in the bounded-dependence and non-signaling models becomes
O
(
log? n

)
in LOCAL over rooted trees, while we know that O

(
log? n

)
in LO-

CAL becomes O(1) in the bounded-dependence and non-signaling models over
any topology by Theorem 4.3. On the other hand, Corollary 5.5 allows us to
obtain lower bounds in online-LOCAL (and, hence, quantum-LOCAL, bounded-
dependence, and non-signaling) through lower bounds in LOCAL: We know that
if an LCL over rooted trees cannot be solved in time O

(
log? n

)
in LOCAL, then it

needs locality Ω
(
log log n

)
in deterministic online-LOCAL and Ω

(
log log log n

)
in randomized online-LOCAL. Hence, in rooted trees we also know that the
LCL complexity class ω

(
log? n

)
in LOCAL becomes Ω

(
log log log n

)
in quantum-

LOCAL, bounded-dependence, and non-signaling.

5.2 LCL complexity landscape in general trees
Recently, Dhar et al. [Dha+24] analyzed more carefully the relation between the
randomized online-LOCAL model and the det-LOCAL model in various kind of
trees: rooted, unrooted, regular, etc. They proved results for the LCL complexity
class ω

(
log n

)
by extending previous results all the way up to the randomized

online-LOCAL model [Akb+23; Bal+22a; Bal+23a; Bal+21a; Cha20; CP19;
GRB22]. By these previous works, it was known that in the LOCAL model,
LCL problems over regular trees that have complexity ω

(
log n

)
fall into one of the

following classes: Θ
(
n1/k

)
for some k ∈ N+. Furthermore, if the tree is also rooted,

we know that the only possible complexities in det-LOCAL are O(1), Θ
(
log? n

)
,

and Θ
(
log n

)
. In [Akb+23] this result was extended all the way up to determinis-

tic online-LOCAL (but only for the case of rooted trees, and did not find an exact
correspondence between LOCAL and online-LOCAL). The authors of [Dha+24]
proved the following two theorems.

Theorem 5.6 (Dhar et al. [Dha+24]). Let Π be an LCL problem on unrooted
regular trees. If Π has complexity Θ

(
n1/k

)
for any k ∈ N+ in det-LOCAL, then it

has complexity Θ
(
n1/k

)
in randomized online-LOCAL, and vice-versa.

Theorem 5.7 (Dhar et al. [Dha+24]). Let Π be an LCL problem on rooted regular
trees. The following holds:



1. If Π has complexity Θ
(
n1/k

)
for any k ∈ N+ in det-LOCAL, then it has com-

plexity Θ
(
n1/k

)
in randomized online-LOCAL, and vice-versa.

2. If Π has complexity Θ
(
log n

)
in det-LOCAL, then it has complexity Θ

(
log n

)
in randomized online-LOCAL, and vice-versa.

Combining Theorem 5.7 with Corollary 5.5, we obtain that in the LCL com-
plexity region O

(
log n

)
over rooted regular trees, the following classes contain

the same problems in LOCAL and randomized online-LOCAL, and are the only
possible complexity classes: O

(
log? n

)
in det-LOCAL and O(1) in randomized

online-LOCAL, or Θ
(
log n

)
both in det-LOCAL and randomized online-LOCAL.

We remind the reader that all these equivalences between complexity classes also
hold between LOCAL and quantum-LOCAL, as well as the bounded-dependence
and the non-signaling models, as they are “sandwiched” between det-LOCAL and
randomized online-LOCAL. [Dha+24] also provided a general result on trees ex-
tending speedup arguments in [Bal+21a].

Theorem 5.8 (Dhar et al. [Dha+24]). Let Π be an LCL problem on general trees.
Then, either Π has complexity Θ(n) in the (deterministic or randomized) LO-
CAL model and in the (deterministic or randomized, respectively) online-LOCAL
model, or the complexity in both models is O

(√
n
)
.

Theorem 5.8 trivially holds for any intermediate model instead of randomized
online-LOCAL. We invite the reader to have a look at Fig. 6 for a representation
of the LCL complexity landscape in trees after the results of [Akb+25; Dha+24].2

We conclude the section observing that, perhaps, the most difficult complex-
ity range is that between ω

(
log? n

)
(hence, by known results, Ω

(
log log n

)
) and

O
(
log n

)
in general (regular or non-regular) trees. The reason is that we don’t

have techniques that we can refer to which we can extend to these (super)quantum
models.

Question 8 (Open). Let Π be an LCL problem over (regular or non-regular) trees
that has classical complexity between Ω

(
log log n

)
and O

(
log n

)
. Can we find

non-trivial upper or lower bounds on the complexity of Π in randomized online-
LOCAL?

Again, sinkless orientation is an example of such problem. The lower bound
of sinkless orientation (and often of other LCLs with similar complexity) is proved
in classical LOCAL via a famous lower bound technique known as round elim-
ination [Bra+16; Bra19]. As we argue in the next section, round elimination is

2We reproduced Figure 2 in [Dha+24], for which we give credits to the authors.
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unfortunately not generalizable to (super)quantum models. Other candidate prob-
lems are: 3-coloring trees, 2-2-3 in 3-regular trees (that is, 2-coloring trees so
that each node of any color x has at least 2 neighbors colored with a color that is
different from x), ∆-coloring trees of maximum degree ∆, etc.

6 Quantum advantage for a local problem
What do we know about quantum advantage in the LOCAL model? Before last
year, there was only one example of quantum advantage: Le Gall, Nishimura,
and Rosmanis [LNR19] showed that there exists a problem that requires Ω(n)
communication rounds in input graphs with n nodes in classical LOCAL, but can
be solved in O(1) rounds in quantum-LOCAL. This problem, however, has an
inherent global and artificial definition, and the winning condition depends on the
joint output of nodes that are at distances Ω(n) between one another, which makes
it very far from problems that are usually interesting for the distributed computing
community, especially from LCLs. Last year, Balliu et al. [Bal+25] exhibited the
first local problem Π that admits quantum advantage in the LOCAL model. The
authors proved that Π is solvable in O(1) rounds in quantum-LOCAL, but requires
Θ(∆) rounds in classical LOCAL, where ∆ is the degree of the input graph. Before
describing the problem in details, let us remark that Π is locally checkable in all
senses except that the maximum degree of the input graph is not bounded, hence it
is not an LCL in the strict sense of Definition 2.2. Indeed, in case ∆ = O(1), then
there would be no asymptotic difference between the complexities in LOCAL and
quantum-LOCAL. Let us now introduce the problem in multiple steps: first we
introduce the GHZ game between three players, then we use it to build Π.

6.1 The GHZ game
The GHZ game is a game between three players that works as follows: Alice,
Bob, and Charlie all receive by an adversary one input bit. The input (x, y, z) is
drawn from the set {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, that is, the promise is that
x ⊕ y ⊕ z = 0 (⊕ is the notation for the XOR logical operator). The players must
produce one output bit each, resulting in a tuple (a, b, c) such that a ⊕ b ⊕ c = 0
if and only if (x, y, z) = (0, 0, 0) (see Table 1). Now, the game allows players
to agree on a strategy before receiving the input (x, y, z), but after it they cannot
communicate anymore. The best classical strategy for the three players to win this
game is to deterministically output a tuple that wins in case (x, y, z) , (0, 0, 0).
However, in the quantum world there is a strategy that always wins the game. An
uninterested reader might just skip the rest of this subsection, as the only notion
that is useful for the rest of this article is that there exists a quantum strategy



that always wins the game. Otherwise, we assume the reader is familiar with
basic notions of quantum computing: if not, we defer the reader to introductory
surveys like, e.g., [BS98]. The players can share a tripartite entangled state |ψ〉 =

1
√

2
(|000〉+ |111〉), known as the GHZ state. If a player receives 0 as input, it makes

a measurement of the entangled state in the basis {|+〉 , |−〉}. Otherwise, it makes a
measurement in the basis { 1

√
2
(|0〉 + i |1〉), 1

√
2
(|0〉 − i |1〉)}. In both cases, the player

outputs 0 if the result of the measurement is the first state, and 1 if it is the second
state [BBT05].

Alice’s (x) Bob’s (y) Charlie’s (z) Winning Condition
Input (x) Input (y) Input (z) (Outputs)

0 0 0 a ⊕ b ⊕ c = 0

0 1 1 a ⊕ b ⊕ c = 1

1 0 1 a ⊕ b ⊕ c = 1

1 1 0 a ⊕ b ⊕ c = 1

Table 1: GHZ game definition: the tuple (x, y, z) is the input and the output (a, b, c)
must satisfy the winning condition.

6.2 Iterated GHZ games

The GHZ game usually comes with a promise that x⊕ y⊕ z = 0. In order to define
our labeling problem, we need to remove this promise. We do so by relaxing the
definition of the game: when x ⊕ y ⊕ z = 1 we allow any combination of outputs
from Alice, Bob, and Charlie: clearly,this modification cannot make the problem
harder. Now, our input is a bipartite graph where the two sets of the bipartition
are the set W of white nodes and the set B of black nodes. White nodes are the
real players of the games, while black nodes represent the games that the players
are playing. More specifically, we assume that each white node has degree ∆ and
each black node has degree 3. We also assume that black nodes are colored with
colors from [∆], and that each white node has a unique neighbor colored with
color c for all c ∈ [∆]. The colors of the black nodes specify the order according
to which a white node must play the games. Every white node v must output a
vector [v1, . . . , v∆] of ∆ bits, where vi ∈ {0, 1} is its output to the game represented
by its neighboring black node of color i. Let v be any black node colored with
color c ≥ 1, and s, t, u its three neighboring white nodes. The problem is defined
as follows:



1. If c = 1, then exactly one among s1, t1, and u1 must be equal to 1, and the
others must be equal to 0.

2. If c > 1, then:

(a) If sc−1⊕tc−1⊕uc−1 = 0, then sc, tc, and uc must solve the GHZ game with
input (sc−1, tc−1, uc−1), that is, sc⊕tc⊕uc = 0 if sc−1, tc−1, uc−1 = (0, 0, 0),
and sc ⊕ tc ⊕ uc = 1 otherwise.

(b) If sc−1 ⊕ tc−1 ⊕ uc−1 = 1, then sc, tc, and uc can be arbitrarily chosen.

Clearly, in 1 communication round the problem can be solved in quantum-
LOCAL as follows: The black nodes of color c = 1 inform their three neighbors
s, t, and u on how to set s1, t1, and u1 so that exactly one of these outputs is equal
to 1. Black nodes of color c > 1 prepare 3 entangled GHZ states as described in
Section 6.1 and send them to their three white neighbors, along with their colors.
The white node will now have ∆ − 1 entangled states |ψ2〉 , . . . , |ψ∆〉, where |ψc〉

comes from the black neighbor of color c. Then, it can locally measure the entan-
gled states, in order, setting all correct outputs without communicating further, as
output number i depends only on |ψi〉 and output number i − 1.

In the classical setting, a trivial strategy would be the following: In round
1, black nodes of color 1 inform their white neighbors about which one should
set its output to 1, while the others set their output to 0. In round 2, the white
nodes inform their neighbors of color 2 about their output that has been set in the
previous round. In this way, the three white neighbors s, t, and u of a black node
v of color 2 have specified the inputs s1, t1, and u1 for another GHZ game. Now v
can locally solve the GHZ game with the new inputs and inform s, t, and u about
their new outputs s2, t2, and u2. Iterating this procedure, we have a solution to the
problem in 2∆ rounds.

Interestingly, Balliu et al. [Bal+25] proved the following result.

Theorem 6.1 (Balliu et al. [Bal+25]). The iterated GHZ problem can be solved in
1 round in quantum-LOCAL but requires Ω

(
min{∆, log∆ log n}

)
rounds in classical

(deterministic or randomized) LOCAL.

The classical lower bound in Theorem 6.1 is obtained through round elimina-
tion (RE), one of the most prominent lower bound techniques. Round elimination
was formalized by Brandt [Bra19] but already used in a less general form to get
an Ω

(
log? n

)
lower bound for 3-coloring cycles by Linial [Lin92]. Nowadays, we

even have an automated software that guides us into the round elimination proce-
dure (i.e., REtor [Oli19]). Round elimination works as follows: Suppose an LCL
problem Π has some complexity T , that is, there exists a T -round LOCAL algo-
rithmA that solves Π, and T is the minimum integer with such property. Imagine



running A for T − 1 rounds on a graph G. Nodes of G now will contain enough
knowledge to be able to solve Π with just one more round of communication.
Hence, one can describe exactly what this knowledge is and come up with the
most general LCL problem Π1 nodes can solve in T − 1 rounds with A. Now
suppose we iterate this procedure for T rounds: We end up with an LCL ΠT that
is solvable in 0 rounds of communication. However, T is usually unknown and
the object of our investigation. Hence, we can guess the magnitude of T (say, T ′)
and analyze ΠT ′ . If the description of ΠT ′ is simple enough, it might be incredibly
easier to understand if ΠT ′ is solvable in 0 rounds: if not, then we get a lower
bound T ′ on the complexity of Π. The usual challenge while performing round
elimination is that the description of Πi grows exponentially fast at each iteration,
and thus it is fundamental to find relaxations of the problem that make Πi easier
to solve but hopefully with a simpler description. Note that while relaxing the
description of a problem, one might exaggerate and end up with a problem that
is just trivial to solve thwarting all the efforts to understand the complexity of the
original problem. The whole procedure specific to the iterated GHZ problem can
be found in [Bal+25].

We remark that round elimination cannot be used in the quantum world: apart
from our result (which separates quantum-LOCAL and classical LOCAL), the
no-cloning principle (that states that quantum states cannot be cloned [DCP16])
forbids us any kind of generalization of RE.

6.3 Networks of non-signaling games
After we established quantum advantage via Theorem 6.1, one may wonder whether
with more refined games we could achieve even a stronger separation. In this sec-
tion we show that, unfortunately, this is not possible.

Definition 6.2 (Game). Let Σ be a finite set, and let m ∈ N+ be the number of
players. We call g ⊆ Σm × Σm a game. Each player i receives one input xi ∈ Σ and
produces one output yi ∈ Σ. A move µ = (x, y) ∈ Σm × Σm is valid if µ ∈ g. We
overload the notation so that g(x) = {y ∈ Σm | (x, y) ∈ g}. We say g is solvable if,
for every x, g(x) is non-empty.

Non-signaling games. Let g be any game of m players. We can define the fol-
lowing labeling problem Π on any graph G = (V, E) with |V | ≥ m. In input, a
subset P ⊆ V with |P| = m is chosen to represent the set of players. Those nodes
receive an input bit and must output another bit so that their joint output solves
g. All other nodes can output any bit. We say that g is non-signaling if there
exists a non-signaling outcome that solves Π with locality 0. Clearly, Π is not
locally checkable, but if we add the further constraint that the diameter of G[P] is



bounded by a constant, then we can make it locally checkable (even if the degree
of the graph might be unbounded).

Network of non-signaling games. We are given a bipartite graph where the
two sets of the bipartition are the set W of white nodes and the set B of black
nodes. White nodes are the real players of the games, while black nodes represent
the games that the players are playing. We assume that each white node has
degree ∆ and each black node has degree m. Each black node represents a non-
signaling game that its white neighbors must play. Also, white nodes can contain
arbitrarily complex arithmetic circuits according to which they need to play the
games: in a sense, the input of a game might depend arbitrarily complex arithmetic
operations on the outputs of previous games. Such a network is called network
of non-signaling games: it includes networks that one can build with quantum
games such as the network in the iterated GHZ problem, and is locally checkable
(possibly with unbounded degree).

[Bal+25] proved the following theorem.

Theorem 6.3 (Balliu et al. [Bal+25]). Let ∆ ∈ N+ be a constant. For any network
of non-signaling games of maximum degree ∆, there exists a classical LOCAL
algorithm solving the games in time O(1), where the constant might depend on ∆.

The key ingredient for Theorem 6.3 is that any non-signaling game is com-
pletable: for example, for a 2-player game this means that for any Alice’s input x
there is some Alice’s output a such that for any Bob’s input y there is still a valid
Bob’s output b, and vice versa. We can exploit completability to solve any net-
work of non-signaling games in a distributed manner: Each white node starts to
process its own arithmetic circuit in a topological order. As soon as it encounters
a step that involves a game, it sends a message to the black neighbor responsible
for that specific game, together with its own input for that game. The black nodes
keep track of the inputs they have seen so far, and they always pick safe outputs
for those players. In this way, in two rounds of communication all white nodes
can learn their own output for the game that appears first in their own circuit. We
can then repeat this for each game in a sequential order—thanks to completability,
while black nodes will be always able to assign valid outputs also for players that
join the game late. The running time of this algorithm is proportional to the size
of the circuit held by a single white node: for a fixed LCL (with a finite set of
possible local circuits) it will be bounded by some constant. With this kind of ar-
guments all we can hope for is a separation that is a function f (∆) of the degree of
the graph, but we still do not have an LCL problem (in the strict sense) separating
LOCAL and quantum-LOCAL by a function f (n) of the number of nodes of the
graph n. We conclude this brief survey with the major open question in the field.



Question 9 (Open). Is there any LCL problem that quantum-LOCAL can solve
asymptotically faster (as a function of the number of nodes) than classical LO-
CAL?
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