
The Formal Language Theory Column
by

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano

20133 Milano, Italy
pighizzini@di.unimi.it

http://www.tucs.nl/
http:/www.utu.fi
 pighizzini@di.unimi.it

Generalized Directions on a Compass

Tim A. Hartmann*

Abstract

Beside the four cardinal directions on a compass (North, East, South,
West), there are more fine grained directions between them, such as
NorthEast and EastNorthEast. They are formed by concatenating neigh-
boring directions, but not arbitrarily: EastNorth and NorthEastEast are in-
correct directions. We study the underlying (though not explicitly given)
recursive naming procedure. As it turns out, these generalized directions on
a compass are indeed unique and are formed by a tabled Lindenmayer sys-
tem, usually used to describe cellular plant growth. As we show, deciding
whether a given string actually forms a direction is solvable in linear time.

1 Introduction
A typical Western world compass rose contains, in clock-wise order, the four car-
dinal directions North (N), East (E), South(S),West(W).1 All further directions
are a combination of these four words. We consider the naming of those between
N and E only, as all other other directions are formed symmetrically.

As the basic principle, the direction exactly half-way between, say N and E, is
formed by fusing these two names together, in this case to NE but not to EN. The
preference for NE over EN on this level is somewhat arbitrary, but the recursively
formed names follow a pattern: The direction between N and NE is not ENN but
is NNE. Similarly, the direction between E and NE is ENE, and not NEE. The
underlying principle is to form, say NNE, is to put N before NE since N compared
to NE has been derived in fewer steps. Hence also E and NE combine to ENE.
Following this pattern, NE and NNE combine to the direction NENNE, and so on.
(Section 2 will state the precise definition. See also Figure 1 and Figure 2.)

This is arguably the natural (recursive) linguistic interpretation of how direc-
tions on a compass are formed. In reality, though, this principle is soon abandoned
in favor of a numeric measurement in degrees (0◦ for N, 90◦ for E and so on).

*CISPA Helmholtz Center for Information Security, Germany, tim.hartmann@cispa.de
1Historically and internationally, there are other forms of compass roses, see [3, 9].

tim.hartmann@cispa.de

NENW

SW SE

N

W

S

E

EN
E

NNENNW

W
N

W
W

W
S

SSW SSE

ESE

NENW

SW SE

N

W

S

E

EEN
E

NEENE

NENNE

NNNE

EN
E

NNE NE

E
N

Figure 1: (Part of) compass roses, with ever more refined directions

Such a numeric measurement is easy to use, and, on the surface, this might be the
reason to favor them over the seemingly complex linguistic interpretation. How-
ever, strictly algorithmically speaking, the linguistic interpretation is also easy to
use. As we show, the recursive naming procedure produces unique names for the
directions on the compass, and further, deciding whether a given string actually
represents a direction on a compass (and if yes, which one) is decidable in linear
time, i.e., deciding the following problem:

Input: A word w ∈ {N,E}∗ of length n.
Question: Is w a direction on the compass strictly between N and E?

Further, there is a strong connection to rewriting systems. As we show, the
generalized directions on a compass can be defined equivalently by a context-free
tabled Lindenmayer system (tabled 0L-system). Here ‘context-free’ refers to the
rules of the L-system. (In fact, the direction on the compass do not form a context-
free language!) L-systems were introduced by Lindenmayer in 1968 to describe
cellular plant growth [6]. The properties and expressiveness of different kinds of
L-systems were extensively studied, see for example the book chapter of Kari et
al. [5]. L-systems have been tied to natural languages before. Becerra-Bonache
et al. [2] point to that certain aspects of natural language are not context-free and
propose that L-systems pose a better model for natural languages.

Section 2 properly defines the directions on a compass. Section 3 introduces
the theory then used in Section 4 to algorithmically detect directions. Finally,
Section 5 points to the connection to rewriting systems.

SSSSE

SSESSSE

SESESSE

SSESESSE

EEESE

ESEEESE

SESEESE

ESESEESE

EEENE

ENEEENE

ENENEENE

NENEENE

NENENNEN
N

EN
EN

N
E

N
N

EN
N

N
E

N
N

N
N

E

SS
SS

W

SS
W

SS
SW

SW
SW

SS
WSS
W

SW
SS

W

WWWSW

WSWWWSW

SWSWWSW

WSWSWWSW

WWWNW

WNWWWNW

WNWNWWNW

NWNWWNW

NW
NW

NNW

N
N

W
N

W
N

N
W

N
N

W
N

N
N

W

N
N

N
N

W

SSSE

SESSE

SEESE

EESE

EENE

NEENE

NEN
NEN

N
N

E

SS
SWSW

SS
W

SWWSW

WWSW

WWNW

NWWNW

NW
NNW

N
N

N
W

SSE

ESE

ENE

N
N

E

SS
W

WSW

WNW

N
N

W

NENW

SW SE

N
W

S

E

Figure 2: A detailed compass rose

2 Two Definitions
By symmetry, we may only consider the directions strictly between N and E.
There is a mechanical and an elegant way to define the set of directions D. The
mechanical way defines D as the union over i = 1, 2, . . . of the leaves of the
ordered rooted binary tree Ti, defined as follows:

1. Tree T1 only contains the root N with a right child E and NE as the left child
of E. (That is, T1 has in-order traversal N,NE,E and NE is the only leaf).

2. For i ≥ 1, let Li be the in-order traversal of the leaves of Ti. Then tree Ti+1

results from Ti by adding for every leaf v with predecessor ℓ and successor
r in Li a left child ℓv and a right child rv. (For example, T2 has in-order
traversal N,NNE,NE,ENE,E and leaves NNE,ENE. See also Figure 3.)

The directions ℓv and rv obtained in above step 2. are located exactly half-way

between ℓ and v, respectively between r and v. Hence the in-order traversal is the
order in which the directions appear clock-wise on the compass.

The elegant way defines D by using the following set D−. Set D− contains
each word of D but with a hyphen at a suitable position. Instead of NE ∈ D we
have N-E ∈ D−. Instead of a direction ℓv ∈ D and rv ∈ D formed in step 2
we have ℓ-v ∈ D− and r-v ∈ D−, respectively. For example NNE ∈ D becomes
N-NE ∈ D− (where the hyphen also indicates a pause while speaking).

Consider i such that tree Ti has leaf uv ∈ D (corresponding to u-v ∈ D−).
Then v is the parent of uv and u is another ancestor of uv. More so, we know
the two children of uv in the tree Ti+1. Indeed, the in-order traversal Li contains
the subsequence u, uv, v or its inversion. That is, we can defineD− inductively by
three simple rules:

1. N-E ∈ D−,

2. fN(u-v) ∈ D− if u-v ∈ D− for some u, v ∈ {N,E}∗, and

3. fE(u-v) ∈ D− if u-v ∈ D− for some u, v ∈ {N,E}∗; where

the mappings fN, fE are defined for inputs u-v with u, v ∈ {N,E}∗ as follows:

fN : u-v 7→ u-uv,
fE : u-v 7→ v-uv.

See Figure 3 for the derivation tree of N-E using mappings fN, fE at most three
times. Let ρ be the mapping that removes any symbol ‘-’ from its input word.
Then D is the set of words ρ(w) with w ∈ D−. For example, NNENENNE ∈ D,
because it can be derived from N-E by repeatedly applying fN and fE, and finally ρ:

N-E
fN
→ N-NE

fE
→ NE-NNE

fE
→ NNE-NENNE

ρ
→ NNENENNE.

The exact position in the tree (and hence also the position on the compass)
is revealed by the sequence in which fN and fE are applied. That is, whether
a direction uuv (and similarly vuv) is the left or the right child of uv depends on
whether the in-order traversal of Ti has subsequence u, uv, v or its inversion (where
i is such that Ti has leaf uv). One can observe that whether its the inversion or not,
flips with every use of fE.

We will work with the elegant definition hereafter.

3 Detecting Directions
Essentially we are tasked to repeatedly undo the mappings fN and fE but without
knowing the position of the hyphen. That is, we would like to compute inverse

N-E

E-NE

E-ENE
E-EENEfN

ENE-EENEfE

fN

NE-ENE
ENE-NEENEfE

NE-NEENEfN

fEfE

N-NE

NE-NNE
NE-NENNEfN

NNE-NENNEfE

fE

N-NNE
NNE-NNNEfE

N-NNNEfN

fN

fN

Figure 3: All derivations of N-E by applying fN, fE at most three times. Ignoring
the hyphens and edge labels, this is also the subtree of T4 rooted at NE.

mappings f −1
N and f −1

E , assuming they are unique. We do so by observing an
alternative way to derive the directions on a compass. This alternative derivation
turns out to be easy to undo.

We rely on functions hN and hE that modify the current word locally. More
precisely, hN and hE are homomorphisms and their replacement for each type of
character is defined as: For X ∈ {N,E},

hX : N 7→ X, hX : E 7→ NE, hX : - 7→ -.

That is, the character ‘E’ is always replaced by ‘NE’, while ‘N’ is replaced by ‘N’
or ‘E’ depending on the subscript of h. Additionally, hN and hE simply ignore the
separator ‘-’. Then, surprisingly, hN and hE provide an alternative way to derive
the directions, for example NNE-NENNE:

N-E
hE
→ E-NE

hE
→ NE-ENE

hN
→ NNE-NENNE.

The sequence of the applied functions hN and hE resembles the reverse order in
which fN and fE were applied. Hence we would like to to decompose, for example
NE-NENNE, as

NE-NENNE
h−1

N
→ NE-ENE

h−1
E
→ E-NE

h−1
E
→ N-E.

Then the order h−1
N h−1

E h−1
E unveils the original order fE, fE, fN. This is no coinci-

dence, as we will show.

3.1 The Inverses
It turns out that the inverses of hN and hE can be computed by parsing the given
word w from left to right with very little lookahead. If w has prefix E, then it
must be derived from a word with prefix N and using hE. If it has prefix NN, it
must be derived from a word with prefix N and using hN. If it has prefix NE, it
must be derived from a word with prefix E, and either hN or hE was used. The
remaining part of w can be decomposed recursively. We thus can state explicit
rules to compute h−1

N and h−1
E . For every suffix v ∈ {N,E, -}∗ and every X ∈ {N,E},

1. h−1
E (Ev) = Nh−1

E (v), and h−1
N (Ev) is not defined;

2. h−1
N (NNv) = Nh−1

N (Nv), and h−1
E (NNv) is not defined;

3. h−1
X (NEv) = Eh−1

X (v);

4. h−1
N (N) = N, and h−1

E (N) is not defined;

5. h−1
N (N-v) = Nh−1

N (-v), and h−1
E (N-v) is not defined;

6. h−1
X (-v) = -h−1

X (v); and

7. hX(ε) = ε.

We note that whether we consider directions with hyphen or not does not in-
fluence h−1

N , h
−1
E . Recall that ρ is the mapping that removes any occurrence of ‘-’

from the input word.

Lemma 3.1. Let w = u-v ∈ D− \ {N-E} and X ∈ {N,E}. Then ρ(h−1
X (w)) =

h−1
X (ρ(w)). Further, h−1

X (u-v) = h−1
X (u)-h−1

X (v) and h−1
X (uv) = h−1

X (u)h−1
X (v).

Proof. For inputs without infix N-E, above rules 1.-7. essentially ignore the sym-
bol ‘-’. That is ρ(h−1

X (w)) = h−1
X (ρ(w)) for every X ∈ {N,E} and word w ∈ {N,E, -}∗

without infix N-E. In fact, this observation applies to w ∈ D− \ {N-E}. That is, we
claim that no word w ∈ D− \{N-E} has infix N-E. Recall that w has form ℓ-v or r-v
where ℓ, v, r is a subsequence in the in-order traversal Li of the tree Ti with leaf v.
Hence ℓ or r has suffix N. However, inductively we observe that no word in Li but
N itself has suffix N. Indeed, in L1 only N itself has suffix N. By induction on i, in
Li again only N has suffix N since all new direction but N-Ni−1E are formed by a
concatenation words with suffix E.

Thus ρ(h−1
X (w)) = h−1

X (ρ(w)) for w = u-v ∈ D− \ {N-E} and X ∈ {N,E}.
Particularly, the rules of 1.-7. are applied to u and v independently, such that
h−1

X (u-v) = h−1
X (u)-h−1

X (v). Finally, we observe that h−1
X (uv) = h−1

X (ρ(u-v)) =
ρ(h−1

X (u-v)) = ρ(h−1
X (u)-h−1

X (v)) = h−1
X (u)h−1

X (v). □

Lemma 3.2. For w ∈ D \ {NE}, at most one of h−1
N and h−1

E is defined.

Proof. For the directions in L2, NNE and ENE, only h−1
N and only h−1

E , respectively,
is defined. By induction, any further word derived from ENE (in terms of fN and
fE) contains the infix EE, hence only h−1

E is defined. Similarly, any further word
derived from NNE (in terms of fN and fE) contains the infix NN, hence only h−1

N is
defined. □

3.2 Uniqueness of the Directions
For N-E, the mapping h−1

N exactly undoes fN, and h−1
E exactly undoes fE.

Observation 3.3. For X,Y ∈ {N,E}, we have h−1
X (fY(N-E)) = N-E if X = Y, and

h−1
X (fY(N-E)) is undefined if X , Y.

Proof. We have h−1
X (fX(N-E)) = h−1

X (X-NE) = N-E for X ∈ {N,E}, but
h−1

N (fE(N-E)) = h−1
N (E-NE) nor h−1

E (fN(N-E)) = h−1
E (N-NE) is defined. □

Every direction in D− other than N-E is derived from N-E. The key insight is
that h−1

N and h−1
E commute with fN and fE.

Observation 3.4. Let X,Y ∈ {N,E} and w ∈ D− \ {N-E}. Then h−1
Y (fX(w)) =

fX(h−1
Y (w)).

Proof. A word w ∈ D− has format uN-uE for some words uN, uE ∈ D. Then

h−1
Y
(
fX(uN-uE)

)
= h−1

Y (uX-uNuE)
L. 3.1
= h−1

Y (uX)-h−1
Y (uNuE)

L. 3.1
= h−1

Y (uX)-h−1
Y (uN)h−1

Y (uE)

= fX
(
h−1

Y (uN)-h−1
Y (uE)

)
L. 3.1
= fX

(
h−1

Y (uN-uE)
)
.

□

Now we have all the ingredients to detect directions on the compass by means
of hN and hE. In general, a direction w is derived from N-E by consecutively apply-
ing n mappings fY1 , . . . , fYn , ρ for some integer n ≥ 0 and subscripts Y1, . . . ,Yn ∈

{N,E}. In other words, w = (ρ ◦ fYn ◦ · · · ◦ fY1)(N-E). If we apply h−1
X1

to w, for
some X1 ∈ {N,E}, we can shift h−1

X1
in the sequence of applied ρ ◦ fYn ◦ · · · ◦ fY1 just

before fY1 , using Lemma 3.1 and Observation 3.4. Then, by Observation 3.3, h−1
Y1

and fY1 cancel out if and only if X1 = Y1. In other words,

(h−1
Y1
◦ ρ ◦ fYn ◦ · · · ◦ fY2 ◦ fY1)(N-E) = (ρ ◦ fYn ◦ · · · ◦ fY2)(N-E). (1)

If X1 , Y1, then the term ends up not being defined. By applying this transforma-
tion iteratively, we obtain the following.

Theorem 3.5. Let X1, . . . ,Xn,Y1, . . . ,Yn ∈ {N,E} for a positive integer n. Then
(h−1

Xn
◦ · · · ◦ h−1

X2
◦ h−1

X1
◦ ρ ◦ fYn ◦ · · · ◦ fY2 ◦ fY1)(N-E) equals NE if (X1, . . . ,Xn) =

(Y1, . . . ,Yn), and is not defined otherwise.

Proof. by Equation (1), (h−1
Xn
◦ · · · ◦ h−1

X2
)(h−1

X1
◦ ρ ◦ fYn ◦ · · · ◦ fY2 ◦ fY1)(N-E) is only

defined for X1 = Y1, and is equal to (h−1
Xn
◦ · · · ◦ h−1

X2
◦ ρ ◦ fYn ◦ · · · ◦ fY2)(N-E). By

repeating this argument for h−1
X2
, h−1

X3
, . . . , h−1

Xn
, the statement follows. □

Hence, given that we can consecutively apply h−1
X1
, h−1

X2
, . . . , h−1

Xn
to some word w

and eventually obtain NE, certifies that w ∈ D and that fX1 , . . . fXn are the applied
rules. Vice versa, any direction (ρ◦ fYn ◦ . . . fY2 ◦ fY1)(N-E) ∈ D can be transformed
to NE by consecutively applying h−1

Y1
, h−1

Y2
, . . . , h−1

Yn
. By Lemma 3.2, we then have

that exactly one of h−1
N and h−1

E is applicable to any directionD \ {NE}, and hence
each direction has its unique derivation in terms of the sequence of fE and fN. In
other words, each directionD defines a unique direction on the compass.

4 Algorithms
First, we observe a simple but slow algorithm, then we develop a fast algorithm.
The findings of the last section immediately imply the simple algorithm: If the
input is NE, we accept it as a direction. Otherwise, if none or both of h−1

N and
h−1

E are applicable to the input, we may reject the input as not being a direction.
Otherwise, we apply the unique mapping that is applicable to the input and re-
curse. Whichever mapping was applicable, reveals the derivation from the initial
direction NE. For an input w of length n, this approach parses about n times a
word of length at most length n, which summarizes to a run time of O(n2). This
analysis is tight as shown by the example NkE for an integer k, where, with every
recursion, the input length shrinks only by one.

Now we develop the fast algorithm. Sometimes the length of a word shrinks
considerably when h−1

N or h−1
E is applied, such that we can hope for fewer than n

recursions. We consider three cases.

Case Infix NkE, k ≥ 2 Consider the extreme case of NkE for some integer k ≥ 2.
Then k − 1 steps are needed to decompose the input to NE:

NkE
h−1

N
→ Nk−1E

h−1
N
→ . . .

h−1
N
→︸ ︷︷ ︸

k−1 applications of h−1
N

NE

The situation is similar if the input w has infix NkE. In this case, the rules for
computing h−1

N and h−1
E imply that w can only be decomposed by h−1

Yk
◦ · · · ◦ h−1

Y1
if

(Yk, . . . ,Y1) = (N, . . . ,N).

Observation 4.1. Let u, v ∈ {N,E}∗ and integer k ≥ 2. Then (h−1
Yk−1
◦ · · · ◦

h−1
Y1

)(uNkEv) equals (h−1
Yk−1
◦ · · · ◦ h−1

Y1
)(u)NE(h−1

Yk−1
◦ · · · ◦ h−1

Y1
)(v) if (Yk−1, . . . ,Y1) =

(N, . . . ,N), and is not defined otherwise.

Thus, if the input w has infix NkE for some k ≥ 2, then w may only consist of
blocks of form Nk′E where k′ ≥ k − 1. Indeed, otherwise w has prefix NℓE or infix
ENℓE for some integer ℓ < k−1. That means that w is derived from a word w′ that
has prefix E or has infix EE. By induction, one can show that w′ must be derived
from ENE. However, any word with an infix NN, such as w, must be derived from
NNE, contradicting that w is derived from w′.

These findings justify the following subroutine. Parse the input w from left
to right to determine the largest integer k such that w contains infix NkE. This
can be done in time linear in n, the length of w. We know that a direction w has
form Nk1E Nk2E . . .NkmE for some integers k1, k2, . . . , km ∈ {k, k − 1} and m ≥ 1.
If that is not the case, we can safely reject the input w. Otherwise, we know that
w decomposes to (h−1

N)k−1(w) = u1 . . . um where ui = E for ki = k − 1 and where
ui = NE for ki = k. An example with k = 3 is

NNNENNENNNE = N3EN2EN3E
(h−1

N)2

→ NEENE.

Hence, by a second parse of w, we can determine the integers k1, . . . , km ∈ {k, k−1}
and then directly state (h−1

N)k−1(w), hence perform k − 1 decompositions steps at
once. The run time is linear in n. Let us perform this step whenever k ≥ 2. Then
every part u1, . . . , um is shortened to a part v1, . . . , vm that shrunk by a factor of at
least 2/3. A border case is NNE that is only shrunk to NE.

Case Infix EkNE, k ≥ 2 We have a similar situation if the input word w contains
a long sequence of E’s. Such a maximum length infix Ek with k ≥ 2 must be
followed by NE, as hE must have been the last derivation step. Consider that w
has form uEkNEv for some u, v ∈ {N,E}∗. Then h−1

E (uEkNEv) = h−1
E (u) NkE h−1

E (v).
Now we are in the same case as discussed before, which is that the input has an
infix NkE. Hence, our algorithm may determine the largest k such that the input
has infix EkNE. We decompose once via h−1

E and then proceed as we did for the
case infix NkE, k ≥ 2. Then again the input shrinks by a factor of at least 2/3.
Similarly to before, this step is possible in time O(n).

Remaining Case In the remaining case, the input w neither has infix Nk nor
infix Ek, for every k ≥ 2. Then w has form u1 . . . um where ui ∈ {NE,ENE} for
every i ∈ {1, . . . ,m}. That is, w decomposes to h−1

E (u) = v1 . . . vm where vi = E if
ui = NE, and where vi = NE if ui = ENE; for i ∈ {1, . . . ,m}. Similarly to before,
our algorithm can perform this step in time linear in the input length. Crucially,
we again shorten the word length by at least a factor of 2/3, since every part is
shortened by at least this factor. For example,

NE NE ENE
h−1

E
→ h−1

E (NE)h−1
E (NE)h−1

E (ENE) = EENE.

Run Time To summarize, three cases of the currently considered word w are
possible. Either there is a long sequence of N’s, a long sequence of E’s, or w has a
simple format. In every case, we can perform one or more decomposition steps at
once in time linear in the length of the current word. The result is that recursively
we shrink the input length by factor of 2/3. Therefore, the recurrence relation
for the run-time depending on the initial input length n is T (n) = T (2

3n)O(n).
This recurrence relation is solved by the third case of the master theorem, as for
example presented in the text book by Cormen et al. [4]. (That is T (n) has form
T (n) = a · T (n

b) + f (n) with f (n) ∈ O(n) with a = 1 and b = 3
2 . We have that

f (n) ∈ Ω(nlog3/2 a+ε) for ε = 0.5 > 0 and a f (n
b) < c · f (n) for c = 4

3 < 1 for all
sufficiently large n.) Hence we conclude that the overall run time is T (n) = O(n).

5 Connection to Rewriting Systems
The key step to understand the directionsD on a compass was rephrasing them in
terms of a rewriting system. As a consequence of Theorem 3.5, that is:

• NE ∈ D, and

• hX(u) ∈ D if u ∈ D and X ∈ {N,E}.

Hence D is defined by a context-free tabled Lindenmayer system (0L-system) on
the alphabet {N,E}, start-word NE and mappings {hN, hE}. Here context-free refers
to that the production rules defined by hN, hE are context-free and does not imply
thatD is context-free. Further, tabled refers two that there is more then one way to
rewrite a word at any given step, here either by hN or by hE. L-systems were intro-
duced by Lindenmayer in 1968 to describe growth of multicellular organisms [6].
We point to the monograph on this matter of Prusinkiewicz & Lindenmayer [7].
The properties and expressiveness of different kinds of L-systems were exten-
sively studied, see for example the book chapter of Kari et al. [5]. As a tabled

0L-system, D is a context-sensitive language [8]. On the other hand, we can ob-
serve thatD is not a context-free language by considering the pumping lemma [1]
on the word NkENkENNkE ∈ D for an integer k. Nevertheless, as we saw, the
directionsD can be recognized in linear time.

6 Acknowledgments
I thank Gerhard Woeginger and Jakob Greilhuber for helpful discussions.

References
[1] Yehoshua Bar-Hillel, Micha Perles, and Eliahu Shamir. On formal properties of

simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und
Kommunikationsforschung, 14(1-4):143–172, 1961.

[2] Leonor Becerra-Bonache, Suna Bensch, and María Dolores Jiménez-López. The lin-
guistic relevance of lindenmayer systems. In Joaquim Filipe, Ana L. N. Fred, and
Bernadette Sharp, editors, ICAART 2010 - Proceedings of the International Confer-
ence on Agents and Artificial Intelligence, Volume 2 - Agents, Valencia, Spain, Jan-
uary 22-24, 2010, pages 395–402. INSTICC Press, 2010.

[3] Qun Rene Chen. Cardinal directions in chinese language: their cultural, social and
symbolic meanings. ETC: A Review of General Semantics, 66(2):225–239, 2009.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, 3rd Edition. MIT Press, 2009.

[5] Lila Kari, Grzegorz Rozenberg, and Arto Salomaa. L systems. In Grzegorz Rozen-
berg and Arto Salomaa, editors, Handbook of Formal Languages, Volume 1: Word,
Language, Grammar, pages 253–328. Springer, 1997.

[6] Aristid Lindenmayer. Mathematical models for cellular interaction in development,
parts i and ii. Journal of Theoretical Biology, 18(3):280–315, 1968.

[7] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of
plants. The virtual laboratory. Springer, 1990.

[8] Grzegorz Rozenberg. T0L systems and languages. Inf. Control., 23(4):357–381,
1973.

[9] Léopold de Saussure. L’origine de la rose des vents et l’invention de la boussole.
Archives des sciences physiques et naturelles, 5:149–181, 1923.

	Introduction
	Two Definitions
	Detecting Directions
	The Inverses
	Uniqueness of the Directions

	Algorithms
	Connection to Rewriting Systems
	Acknowledgments

