THE CompuTaTIONAL CoMPLEXITY COLUMN

BY

MicHAL Koucky

Computer Science Institute, Charles University
Malostranské nam. 25, 118 00 Praha 1, Czech Republic
koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

https://www.mff.cuni.cz/en/iuuk
https://www.mff.cuni.cz/en
koucky@iuuk.mff.cuni.cz
https://iuuk.mff.cuni.cz/~koucky/

SIMULATING FAST ALGORITHMS WITH LESS
MEMORY

Ryan Williams
MIT and Institute for Advanced Study
rrw@mit.edu

Abstract

My goal is to provide a friendly background exposition of the recent
theorem in computational complexity that TIME[¢] € SPACE[y/tlogz]. In
English, the theorem says that for every problem that can be solved by a
multitape Turing machine running in time ¢, there is another machine which
solves the same problem using only O(+/tlogt) space. The reader will de-
termine whether or not this goal was met. ©

1 Introduction

Many basic efficient algorithms consume an amount of memory that’s propor-
tional to their running time. For intricate algorithms where brand new information
is constantly being computed from past results, it is natural to allocate a little bit
of new space in every step or every other step, to store this new information for
future use. For example, a dynamic programming solution, in which one builds
a table with complex dependencies on previously-computed results, may require
a table with its number of cells proportional to the total number of steps taken
by the algorithm. In other words, any particular algorithm A with #(n) running
time may well require ®(#(n)) units of space. Is this level of space required by all
algorithms computing the same function as A?

Question: Are there problems solvable in t(n) time which require
Q(t(n)) units of space to solve?

*This material is based upon work supported by the National Science Foundation under grants
DMS-2424441 (at IAS) and CCF-2420092 (at MIT).

To get a handle on the question, let’s view it a little differently. Take any
algorithm A that runs in time #(n) (and which may use ®(#(n)) space). Does there
always exist another algorithm B which is equivalent in functionality to A, but uses
significantly less space than O(#(n))? Observe that a no-answer to this question is
equivalent to a yes-answer to our original Question.

There does not seem to be any intuitive reason to believe that such an algo-
rithm B always exists, for every algorithm A. It is easy to imagine that some algo-
rithm A on n-bit input x can perform a sequence of operations that are so intricate
and sophisticated, that along the way A produces some #(n)-bit string Y, which is
pseudorandom, or unpredictable, or incompressible, in some quantifiable sense.
Why would (or should) there be an algorithm B which on input x can effectively
produce all the bits of Y, as needed, but uses drastically less memory than Q(#(n))
bits? It would only take one “weird” A capable of producing nastily incompress-
ible strings on its inputs, in order for our Question to have a yes-answer.

A surprising answer. Amazingly, a sequence of three papers starting with Hop-
croft, Paul, and Valiant in 1975 [8, (14, [7]] showed that the answer to the Question
is NO for essentially all reasonable models of computationE] Namely, these papers
show that #(n)-time algorithms can always be simulated in only O(#(n)/ log t(n))
space !E] In complexity notation, we have the inclusion of classes

TIME[#(n)] € SPACE[#(n)/ log t(n)],

and this inclusion holds for a variety of underlying computational models.
However, there is a practical caveat to these simulation results: while the re-
sulting algorithm B (simulating time-#(n) algorithm A) runs in O(#(n)/log t(n))
space as desired, B also takes running time 22¢™" for & > 0 (but & can be as small
as desired). Therefore, we’ve exchanged a tiny-looking log-factor improvement
in space usage, for an exponential blow-up in the running time. Hopcroft, Paul,
and Valiant [8] also show that a time-space tradeoff is possible: for all reasonable
functions b(n), the (multitape Turing machine) algorithm B can be implemented
in O(t(n)/ log log b(n)) space and O(b(n) - t(n)) time. So, for example, there is a B
running in O(t(n)/ log log #(n)) space and #(n) - 24°¢"™” time, for every & > 0.

Why should we care? What is the use of such a simulation, showing that time-¢
computations can be simulated in o(f) space but using substantially more time?

Note that these three papers were titled “On Time Versus Space”, “On Time Versus Space 11,
and “On Time Versus Space III”, respectively. It took a surprising level of self-control for me to
resist naming my contribution “On Time Versus Space [V”".

2We also note that the paper [8]] cites an earlier work by Paterson-Valiant [16] which showed
that every Boolean circuit of size s(n) > n has an equivalent circuit of depth O(s(n)/ log s(n)), an
equally surprising result in circuit complexity.

On the one hand, if one allows the simulation time to be exponential, such a sim-
ulation would become useless in practice. On the other hand, if one uses the
polynomial-time version of the simulation instead, a log-log-factor improvement
in space would apparently not be too noticeable. One hypothetical application
would be to increase the computational ability of a device which has low memory
and little access to the rest of us, such as an aging deep space probe. We imagine
this probe has significantly less on-board memory than a modern computer, but
has particular inputs (observations it can make) which are unavailable to comput-
ers on Earth. Instead of trying to send those inputs back to Earth, which could be
intractable for various reasons, the probe could apply a TIME[¢] € SPACE[o(?)]
type result to use a more memory-restricted version of a time-efficient algorithm,
allowing strictly more computations to be performed in principle. Despite this
colorful scenario, it is still not obvious (to me) that there is a concrete practical
application of TIME[f] € SPACE[o(¢)] results when the time complexity of the
o(t)-space simulation is large.

Nevertheless, there are at least two good non-practical (theoretical) answers to
the question of why we should care.

1. Time and space are fundamental resources for computing, and understand-
ing how the two relate to each other is one of the most basic problems that
we could study. Any non-trivial result relating the TIME and SPACE com-
plexity classes is worth knowing.

2. We can use such surprising simulations to prove impossibility results (a.k.a.
lower bounds) for simulating space-bounded computations quickly. The
famous P vs PSPACE question is equivalent to asking whether SPACE[r] is
contained in TIME[#*] for some constant k > 1. Using the simulations of [8]
14.7]], we can conclude that SPACE([#] is not contained in TIME[o(n log n)].
Otherwise, we would be able to derive that

SPACE[#r? log n] € TIME[o(n?* log® n)] € SPACE[o(n* log n)],

a contradiction to the Space Hierarchy Theorem [19]]. Thus these simula-
tions provide a very modest time lower bound against linear space.

Should we expect a better simulation? While simulations of TIME in smaller
SPACE are indeed useful for proving lower bounds, the approach seems like
overkill. To prove SPACE[n] € TIME[T (n)] for large T (n), we only have to find
some hard problem in linear space that cannot be solved in 7'(n) time. This seems
to be much easier (and more likely to be true) than simulating every problem in
TIME[T (n)] inside of SPACE[o(n)]. In the words of Ben Brubaker of Quanta
magazine [2]], the approach “feels almost cartoonishly excessive, akin to proving

a suspected murderer guilty by establishing an ironclad alibi for everyone else on
the planet.”

Apparently it was believed that the TIME[f] € SPACE[z/logt] simulation
could not be improved by much. First of all, there were tight lower bounds for the
general approach: the various strategies of all prior work [8, 14, 7] can be captured
by a simple pebble game on directed acyclic graphs, and extensive work [15, [10]
showed that there are graphs on which all the time-space tradeoffs proved are
optimal. Thus, it was well-known that if the simulation could be improved, it
would have to be done using very different techniques from prior work.

At some point, researchers began exploring the consequences of assuming that
Hopcroft-Paul-Valiant and its successors cannot be improved in a substantial way.
In one of the first derandomization papers giving serious evidence that P = RP,
Sipser [20] showed that assuming a certain expander conjecture (which was later
proven to be true [21]]) and assuming the conjecture that TIME[¢] ¢ SPACE[!~?]
for all € > 0, we can conclude P = RP. The later pioneering work by Nisan
and Wigderson [[11]] showed that assuming TIME[¢] ¢ SPACE[¢'~*] for all & > 0
also implies a derandomization of BPP. Crucially, their work also shows the
assumption TIME[¢] ¢ SPACE[#'~#] can be relaxed to the assumption that TIME[?]
does not have Boolean circuits of size #'~¢ (i.e., TIME[f] ¢ SIZE[t'~?]). That is,
Nisan and Wigderson showed we do not need space lower bounds against time
to obtain derandomization; we only need circuit size lower bounds against time.
Our recent work simulating time in smaller space contradicts the conjecture that
TIME[¢] ¢ SPACE[+'~#] for all £ > 0, but it says nothing about the more plausible
conjecture that TIME[¢] ¢ SIZE[+'~*] for all £ > 0.

The new surprise. If you read the abstract of this paper, there is unfortunately
no real surprise. ® The simulation of TIME[¢] inside of SPACE[#/log] can be
radically improved for the multitape Turing machine model:

Theorem 1.1 ([22]). Every multitape Turing machine running in time t(n) can be
simulated by another multitape Turing machine using space only O(\/t(n) log t(n)).

To appreciate the scope of this result, we note the surprising power of mul-
titape Turing machines. Recall that these are simply Turing machines endowed
with a constant number of tape heads that may independently access any constant
number of tapes. (In each step of such a machine, each tape head reads its current
cell, writes to its current cell, and may move left or right on the tape.) Already
two-tape Turing machines appear to be quite powerful: the P-complete Circurr
Evaruartion problem [13]], sorting [[17], fast matrix multiplications, fast Fourier
transforms (and integer multiplication), and many other basic algorithms [[18] can
be implemented on such devices with running times that are comparable (up to

polylogarithmic factors) to the best known running times on arbitrary random-
access models of computation. In fact, it is a major open question to find any
decision problem that can be solved in O(T'(n)) time on a random access model of
computation (for some 7'(n) > n), which cannot be solved in 7'(n) - poly(log T'(n))
time on a two-tape Turing machine. Despite their restricted sequential access to
tapes, multitape Turing machines can perform surprisingly quick amortized com-
putations if they are allowed (at least linear) time to shuffle data around.

2 How Does It Work?

The main idea behind proving this result is to read the correct pair of papers at
the same time, and to believe very strongly that the ideas of these papers can be
successfully combined. The two papers to read are:

1. Hopcroft, Paul, and Valiant’s “On Time Versus Space” from FOCS 1975 [8],
and

2. Cook and Mertz’s “Tree Evaluation in O(log n-log log n) Space” from STOC
2024 [4]

We’ll go through both of these soon. Prior to discussing either of them, we will
introduce a graph-theoretic notion for reasoning about a time-f computation. This
notion makes sense for essentially any reasonable serial model of computation,
and it models the “flow of information” in the computation.

Given a “machine” M of some type and an input x to run on M, we define a
computation graph G, in the following way.

First, there are ¢ + 1 nodes labeled 0, 1,...,t, representing the steps of the
computation. Each node i will be tagged with some bits of information info(i),
which informally is the information computed by M in the i-th step. (For now, we
think of info(0) as encoding the initial state of the machine, which is passed to step
1.) For example, if M is a multitape Turing machine, info(i/) may simply denote
the transition computed in the i-th step: the states at the beginning and end of the
i-th step, the symbols read, the symbols written, and the head positions moved.

Second, we put a directed edge (i, j) in Gy, if and only if info(i) is needed to
compute info(j). For example, in basically every computational model, we have
the edges (i — 1,i) for all i € [f] := {1,...,t}: we always need the “program
counter” or “state” at the end of step i — 1 in order to compute step i. We also
need an edge (i, j) if there is a “register” or “cell” written to in step i which is read
next in step j. For reasonable models, we only access O(1) memory locations in
any one step, so the indegree of each node of G, 1s O(1). Observe that such a
directed graph is always acyclic.

The graph Gy, is defined so that the following important property holds. For
every j € [t], let in-nbrs(j) be the set of all i such that (i, j) is an edge. Then we
have the principle:

Given info(i) for all i € in-nbrs(i), we can compute info(j) in O(1)
steps.

(Indeed, the computation we are doing is effectively simulating M on x for one
step.) Our goal is to determine info(#), which will tell us whether the computation
accepts or rejects.

What we need from HPV. Motivated by the above principle, HPV define a
pebble game to be played on DAGs such as Gj,. The game has the following
rules:

1. We can always put a pebble on a source node.
2. Given pebbles on all nodes in in-nbrs(i), we can put a pebble on node i.
3. We can remove pebbles at any time.

Here, the act of placing a pebble directly corresponds to simulating one step of
M on x. Therefore, a very interesting question is: how many pebbles do we
need to pebble the nodes of an n-node graph? HPV show that for directed acyclic
graphs of indegree O(1), there is a pebbling algorithm which uses only O(n/ logn)
pebbles. This directly corresponds to a memory-bounded algorithm: in principle,
we only need to keep around O(z/ log t) “intermediate results” of the computation,
in order to determine the final outcome. This strongly suggests that we only need
O(t/ log t) space to simulate a time-¢# computation.

However, we don’t know this graph G, in advance, and we can’t naively
store this (# + 1)-node DAG in only O(¢/logt) space. For multitape Turing ma-
chines, HPV get around this issue by showing how to compress the computation
graph, by partitioning the time and space of the computation into pieces. (Later
work extending their simulation to random-access models [14, [7] works by per-
forming clever space-saving simulations which effectively model good pebbling
strategies, without storing a computation graph explicitly. This point will be dis-
cussed further in the last section.) This compressed graph notion will prove very
useful for us.

Fix a multitape Turing machine M and input x. For a parameter b € [1,1]
(which we will think of here as close to /), each tape of M (on x) is partitioned
into blocks of b contiguous cells each, and the time of M (on x) is partitioned into
intervals of b consecutive steps. Our compressed computation graph G/, . has
only n := O(t/b) nodes, one for each interval. For an interval i, we define info(7)

to be all the information computed by M (on x) during interval i. This includes the
state and tape head positions at the end of the interval, along with the contents of
tape blocks accessed during interval 7, at the end of the interval. We define info(0)
to simply be the initial configuration of M on x: the initial state of M and initial
head positions, along with the input x. Similarly to the definition of the original
graph G, we put an edge (i, j) exactly when we need some data from info(i) to
compute info(j)E]

As each tape block has b cells and intervals are b steps long, at most two tape
blocks may be accessed in an interval. Since there are a constant number of tapes,
the indegree of each node in G, is still O(1). Also observe that, when we are
given info(i) for all in-neighbors of a node j, we can compute info(j) in O(b) steps.

We can view the problem of computing info(n) in the (n + 1)-node graph G},
as a special Circuit EvaLuarion problem, where we have a circuit of n nodes with
wires given by the edges of the graph, and where every gate of the circuit takes
in O(b) bits of information from a constant number of in-neighbors, runs for O(b)
steps on this information, and outputs O(b) bits of information.

As before with the graph G, we cannot really know the graph G, , in ad-
vance; it needs to be computed somehowﬂ Since our graph G, has only O(z/b)
nodes, which will be approximately v/t, we could enumerate over all possible such
graphs in O(t/b - log(t/b)) space (in fact, due to their structure coming from mul-
titape Turing machines, these graphs can be encoded in O(¢/b) bits, by guessing
the head movements across tape blocks; see the paper [22]). For each candidate
graph G”, we may attempt to simulate M on x by pebbling G”. If G” is not suit-
able, then it must “violate” the head movements of M on x in some way: such a
violation will arise if we are missing an edge (i, j) but we needed info(i) in order
to compute info(). If we find that some edge is missing for us, then we move on
to the next possible G””. We know that the O(t/b)-node ij’x can be pebbled using
only O(t/b)/ log(t/b) pebbles, and we know that storing each pebble (which is just
info(i) for various i) takes O(b) space. Therefore for b = ¢* for some € € (0, 1),
the overall space usage is O(¢/ logt).

What we need from Cook and Mertz. Cook and Mertz [4] study an apparently
unrelated problem, introduced by (another) Cook et al. [Sl], called TREe EvaLua-
TiIoN. For the purposes of this article, we will think of TRee EvaLuarion as the
following problem. We are given:

3Hopcroft-Paul-Valiant also add other technical conditions, such as making the machine M
“block-respecting”, but they aren’t really necessary.

4If M was an “oblivious” Turing machine with structure, then we could compute the edges of
Gy, but making an arbitrary multitape Turing machine oblivious requires extra time overhead.
See the paper [22] for details.

e arooted tree T of height 4, where each node of T has d children and d <
o(1),

e a function f : ({0,1}*)? — {0, 1}, presented as a table of 2¢* values, each
of which are b-bits long, and

e for each leaf £ of T, we are given a value v, € {0, 1}’.

Note that the tree T could be very large, and have nearly d"*! nodes in total. For
each inner node u of T with children u;, ..., u,;, we inductively define the value
v, tobe f(v,,,...,v,) (we concatenate the values v,,,...,v,, and feed the db-bit
result as input to f). Starting from the leaves, this yields a value v, for every u in
T. The goal of TrRee EvaLuATION is to compute v,, where r is the root of T'.

We can apply the pebble game to any tree 7', which we can think of as a di-
rected acyclic graph where the children have arcs to their parents. A simple depth-
first pebbling strategy shows that every TREe EvaLuatioN instance (construed as a
DAG) can be pebbled using O(h) pebbles, storing at most two pebbles at each
level of the tree. Since each node value takes b bits to describe, this corresponds
to an evaluation algorithm using O(h - b) space. For pebbling, [S] show that we
can’t do better.

Incredibly, Cook and Mertz [4] show how to use only O(hlogb + b) space,
replacing the product of h and b with nearly the sum of h and b. In trying to
describe Cook and Mertz’s algorithm to others, Arthur C. Clarke’s quote often
comes to my mind: Any sufficiently advanced technology is indistinguishable from
magic [3]. We are very accustomed to thinking about the space complexity of
algorithms in particular rigid ways: viewing the space usage in terms of some
stack, bounding the maximum height of the stack, bounding the “width” a.k.a. the
number of bits needed on one layer of the stack, and so on. For TREe EvaLuaTiON,
our stack height is & and our width is b. Cook and Mertz’s algorithm provides a
genuinely new way of reusing space in a recursive algorithm, inspired by work in
catalytic computation which was initiated by Buhrman et al. [1]. They still have
a stack of height A, but its width is only O(log b). Instead of having b bits at every
layer of the stack, there is a common storage of O(b) bits which is reused many
times over, at every layer of the stack. Time and space prevent us from describing
their algorithm in detail; beyond their paper, see [6, 22] for alternative expositions
of their great result.

What does this have to do with computation graphs? We have a surprisingly
space-efficient algorithm for evaluating trees in which each leaf holds a b-bit
value, and each inner node of the tree computes a function from O(b) bits to b
bits, from children to parent. The problem of evaluating G}, . amounts to evalu-
ating a circuit or directed acyclic graph in which each source holds a b-bit value,

and each non-source node computes a function from O(b) bits to b bits, taking in
values from its in-neighbors.

A folklore result in Boolean circuit complexity states that every Boolean cir-
cuit C of depth i (where each gate has arbitrary fan-out) can be computed by an
equivalent Boolean formula F of depth h, where each gate has fan-out 1. The
idea is, starting from the output gate of C, to “unroll” C backwards: we perform a
depth-first traversal of C by traversing arcs backwards, in effect enumerating over
all paths from the output gate to some source node of C. Doing so, we obtain a
Jormula where each gate of the formula can be given a name by specifying a path
from some gate of C to the output gate of C. The formula F' may contain many
copies of gates from C, but its overall depth will be the same as that of C. More-
over, this transformation is space-efficient: given the encoding of C and a path P
from a gate g to the output of C, the path P names a gate in the formula F. We can
easily compute the names of the children of P in the formula F, using the circuit
C. For an n-gate circuit C of depth d and O(1) fan-in, it takes only O(d) space to
specify a gate in F' (by walking backwards from the output of C), and to compute
the names of its children.

We can think of Boolean circuits as a special case of a computation graph
where the block size b = 1, and we can think of Boolean formula evaluation as
a special case of TREe EvaLuation where b = 1. The above transformation from
circuits to formulas works equally well for circuits and formulas which pass along
b-bit values on all their wires, where b > 1. Therefore we can apply the Cook-
Mertz procedure for TREe EvaLuatioN to a candidate computation graph G”, in
order to simulate a multitape Turing machine M on an input x. Setting b = V/? to
be the length of a time interval, the total number of intervals becomes O(¢/b) =
h = O(/1) and the simulation runs in O(V? - log t) space overall. To minimize the
space usage, we want to set

b = hlog(b).

Slightly adjusting b to be +/tlog ¢, making the intervals a little longer, the number
of intervals becomes O(4/t/ log) and we obtain the final O(4/t log t) space bound.

3 What’s Next?

I believe that currently the most significant open problem is to extend the simu-
lation of TIME[¢] in SPACE[/¢ log t] to more general random-access models of
computation (RAMs), or to give compelling evidence that this cannot be done. A
weaker but still very interesting result would be to show that time-#(n) on RAMs
can be simulated in space O(#(n)'~®) for some & > 0. Let me outline some ideas
for how this latter problem might be solved.

Concretely, let us suppose we have a Turing machine with access to a tree
storage [14]: instead of a tape storage with cells arranged in a line, the Turing ma-
chine receives its input written on a complete binary tree of depth O(log n), where
each node of the tree is now a cell. The tape head starts at the root of the tree.
At each step, the Turing machine reads from the current cell, changes its state,
overwrites the current cell, and moves its head to either the parent of the current
cell, the left child of the current cell, or the right child of the current cell. For all
reasonable random-access models that we know of, those that run in time #(n) can
be simulated on a tree storage in #(n)-poly(log #(n)) time. Thus it suffices to extend
the space-efficient simulation to a tree storage. It does not seem that we can easily
embed the computation graph for such a Turing machine into a nice Tree Eval-
uation instance that we can succinctly store and manipulate. But perhaps if we
can go “beyond” Tree Evaluation—doing something similar to what Tree Evalu-
ation does in spirit, without actually storing an explicit graph—then perhaps we
can obtain a better simulation. This is precisely how the extensions of Hopcroft-
Paul-Valiant to random-access models work [14, [7]]: these extended simulations
do not store a computation graph explicitly. Instead, they simply present particular
recursive strategies for saving space, and argue in their analysis that their simula-
tion corresponds to “pebbling” a -node computation graph representing the RAM
computation, where every node corresponds to a single step.

Another possible direction (towards a better simulation for random-access
models) would be to improve the best-known O(V#(n)) space bound for simu-
lating a one-tape Turing machine running in time O(#(n)) [9} [12]. It is not hard
to show that every O(t(n))-time Turing machine with a tree storage can be sim-
ulated by a standard one-tape Turing machine in about O(#(n)?) time, by simply
sweeping through the entire contents of the tree storage during every simulated
step. Therefore if we could simulate time 7'(n) on one-tape Turing machines in
O(T (n)'/?=%) for some & > 0 (a slight improvement over the multitape case), then
we would have a new space-eflicient simulation of O(#(n))-time RAMs as well.

References

[1] Harry Buhrman, Richard Cleve, Michal Koucky, Bruno Loff, and Florian
Speelman. Computing with a full memory: catalytic space. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 857-866. ACM, 2014. doi:10.
1145/2591796.2591874.

[2] Ben Brubaker. For algorithms, a little memory outweighs a lot of time.
Quanta Magazine, May 2025. URL: https://www.quantamagazine.
org/for-algorithms-a-little-memory-outweighs-...-20250521/.

https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1145/2591796.2591874
https://www.quantamagazine.org/for-algorithms-a-little-memory-outweighs-a-lot-of-time-20250521/
https://www.quantamagazine.org/for-algorithms-a-little-memory-outweighs-a-lot-of-time-20250521/

(3]

(4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

Arthur C. Clarke. Profiles of the future: an inquiry into the limits of the
possible. Harper & Row, New York; London, rev. ed. edition, 1973.

James Cook and Ian Mertz. Tree evaluation is in space O(log n - log log n).
In Proceedings of the 56th Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 1268—1278. ACM, 2024. URL: https://doi.org/10.
1145/3618260.3649664.

Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and
Rahul Santhanam. Pebbles and branching programs for tree evaluation. ACM
Trans. Comput. Theory, 3(2):4:1-4:43, 2012. URL: https://doi.org/
10.1145/2077336.2077337.

Oded Goldreich. On the Cook-Mertz Tree Evaluation procedure. Electron.
Collogquium Comput. Complex., TR24-109, 2024. URL: https://eccc.
weizmann.ac.il/report/2024/109.

Joseph Y. Halpern, Michael C. Loui, Albert R. Meyer, and Daniel Weise.
On time versus space III. Math. Syst. Theory, 19(1):13-28, 1986. URL:
https://doi.org/10.1007/BF01704903.

John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. On time versus
space. J. ACM, 24(2):332-337, 1977. Conference version in FOCS’75. URL:
https://doi.org/10.1145/322003.322015.

John E. Hopcroft and Jeffrey D. Ullman. Relations between time and tape
complexities. J. ACM, 15(3):414-427, 1968. URL: https://doi.org/10.
1145/321466.321474|

Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on
time-space trade-offs in a pebble game. J. ACM, 29(4):1087-1130, 1982.
doi:10.1145/322344.322354.

Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Com-
put. Syst. Sci., 49(2):149-167, 1994. URL: https://doi.org/10.1016/
S0022-0000(05)80043-1.

Mike Paterson. Tape bounds for time-bounded Turing machines. J. Com-
put. Syst. Sci., 6(2):116-124, 1972. URL: https://doi.org/10.1016/
S0022-0000(72)80017-5.

Nicholas Pippenger. Fast simulation of combinational logic networks by
machines without random-access storage. In Proceedings of the Fifteenth
Annual Allerton Conference on Communication, Control and Computing,
pages 25-33, 1977.

Wolfgang J. Paul and Riidiger Reischuk. On time versus space II. J. Com-
put. Syst. Sci., 22(3):312-327, 1981. URL: https://doi.org/10.1016/
0022-0000(81)90035-0.

https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/2077336.2077337
https://doi.org/10.1145/2077336.2077337
https://eccc.weizmann.ac.il/report/2024/109
https://eccc.weizmann.ac.il/report/2024/109
https://doi.org/10.1007/BF01704903
https://doi.org/10.1145/322003.322015
https://doi.org/10.1145/321466.321474
https://doi.org/10.1145/321466.321474
https://doi.org/10.1145/322344.322354
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(72)80017-5
https://doi.org/10.1016/S0022-0000(72)80017-5
https://doi.org/10.1016/0022-0000(81)90035-0
https://doi.org/10.1016/0022-0000(81)90035-0

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds
for a game on graphs. Math. Syst. Theory, 10:239-251, 1977. doi:10.
1007/BF01683275.

Mike Paterson and Leslie G. Valiant. Circuit size is nonlinear in depth. Theor.
Comput. Sci., 2(3):397-400, 1976. URL: https://doi.org/10.1016/
0304-3975(76)90090-6.

Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. J. ACM,
25(1):136-145, 1978. doi:10.1145/322047.322060.

Arnold Schonhage, Andreas F. W. Grotefeld, and Ekkehart Vetter. Fast al-
gorithms: a multitape Turing machine implementation. Bibliographisches
Institut, Mannheim, 1994.

Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II. Hierarchies
of memory limited computations. In 6th Annual Symposium on Switching
Circuit Theory and Logical Design, pages 179-190. IEEE Computer Society,
1965. URL: https://doi.org/10.1109/F0CS.1965.11.

Michael Sipser. Expanders, randomness, or time versus space. J. Com-
put. Syst. Sci., 36(3):379-383, 1988. URL: https://doi.org/10.1016/
0022-0000(88)90035-9.

Michael E. Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit or-dispersers
with polylogarithmic degree. J. ACM, 45(1):123-154, 1998. URL: https:
//doi.org/10.1145/273865.273915.

R. Ryan Williams. Simulating time with square-root space. In Michal
Koucky and Nikhil Bansal, editors, Proceedings of the 57th Annual ACM
Symposium on Theory of Computing, STOC 2025, Prague, Czechia, June
23-27, 2025, pages 13-23. ACM, 2025.doi:10.1145/3717823.3718225.

https://doi.org/10.1007/BF01683275
https://doi.org/10.1007/BF01683275
https://doi.org/10.1016/0304-3975(76)90090-6
https://doi.org/10.1016/0304-3975(76)90090-6
https://doi.org/10.1145/322047.322060
https://doi.org/10.1109/FOCS.1965.11
https://doi.org/10.1016/0022-0000(88)90035-9
https://doi.org/10.1016/0022-0000(88)90035-9
https://doi.org/10.1145/273865.273915
https://doi.org/10.1145/273865.273915
https://doi.org/10.1145/3717823.3718225

	Introduction
	How Does It Work?
	What's Next?

