
The Formal Language Theory Column
by

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano

20133 Milano, Italy
pighizzini@di.unimi.it

The contribution by Antonio Casares presented in this issue of BEATCS studies
the placement of the acceptance condition on automata over infinite words and
discusses how the community is currently experiencing a shift from using state-
based acceptance to using transition-based acceptance, explaining why this shift
is taking place. Maybe in the near future, for the reasons discussed in this survey,
transition-based omega-automata will become the default model in the community.
The survey is derived from the final chapter of Antonio’s PhD Thesis.

http://www.tucs.nl/
http:/www.utu.fi
 pighizzini@di.unimi.it

Transition-based vs stated-based acceptance
for automata over infinite words

Antonio Casares*

Abstract

Automata over infinite objects are a well-established model with appli-
cations in logic and formal verification. Traditionally, acceptance in such
automata is defined based on the set of states visited infinitely often during
a run. However, there is a growing trend towards defining acceptance based
on transitions rather than states.

In this survey, we analyse the reasons for this shift and advocate using
transition-based acceptance in the context of automata over infinite words.
We present a collection of problems where the choice of formalism has a
major impact and discuss the causes of these differences.

Contents
1 Introduction

2 From states to transitions and vice versa

3 Minimisation and transformations of automata

4 Games on graphs and strategy complexity

5 What about finite words?

6 Outlook: Why all these differences?

*University of Warsaw, Poland. Email: antoniocasaressantos@gmail.com
This work was supported by the Polish National Science Centre (NCN) grant “Polynomial finite
state computation” (2022/46/A/ST6/00072).

antoniocasaressantos@gmail.com

1 Introduction

Automata theory is a central and long-established topic in computer science. The
definition of finite automata has barely suffered any modification since the in-
troduction of non-deterministic automata by Rabin and Scott [RS59]. However,
the generalisation of automata to infinite words presents less stable definitions,
as different modes of acceptance are best suited to different situations. Recently,
there has been a shift in the community towards using transitions instead of states
to encode the acceptance condition of ω-automata. In this survey, we analyse the
reasons for this shift and advocate using transition-based acceptance in the context
of automata over infinite words.

Automata over infinite words. An automaton over an input alphabet Σ is
given by

• a finite set of states Q,

• a set of transitions ∆ ⊆ Q × Σ × Q,

• a set of initial states Qinit ⊆ Q, and

• an acceptance condition.

A run over a (finite or infinite) word w is a path in the automaton starting in Qinit

and with transitions labelled by the letters of w. The acceptance condition is thus
a representation of the set of paths that are accepting.

If the automaton works over finite words, the acceptance condition usually
takes the form of a subset of final states: a run is accepting if it ends in one of
them (see Section 5 for further discussions on finite words). For automata over in-
finite words the situation is more complicated. Several acceptance conditions are
commonly used, but they differ in expressive power and the complexity of related
problems (see for instance [Bok18]). The main focus of this paper is the following
dichotomy: Should we use states or transitions to encode the acceptance condi-
tion of automata over infinite words? More formally, we will consider acceptance
conditions of one of the following forms.

A state-based acceptance condition is a language Acc ⊆ Qω. A transition-
based acceptance condition is a language Acc ⊆ ∆ω.Usually, we represent them
via a finite set of colours C, a colouring function γ : Q→ C (resp. γ : ∆→ C) and
a language Acc′ ⊆ Cω. That is, we see automata as transducers Σω → Cω, and the
acceptance condition is given by a subset of the image. Two languages that are
commonly used as acceptance conditions are:

• Buchi = {w ∈ {−, •}ω | w contains • infinitely often}. We may refer to states
(resp. transitions) coloured with • as accepting.

• coBuchi = {w ∈ {−,✗}ω | w contains ✗ finitely often}.

We show examples of Büchi automata in Figure 1.

b

a

b

a
• •

b

a

b a

b a

Figure 1: Two Büchi automata recognising the language of words containing in-
finitely many factors ‘aa’. The automaton on the left uses transition-based accep-
tance, while the automaton on the right is state-based.

The origins. Automata over infinite words were first introduced by Büchi
in the 60s [Büc62], using a formalism that put the acceptance condition over
states.1 The tradition of employing state-based acceptance persisted in all sub-
sequent classic foundational works on ω-automata: Muller’s paper at the origin of
the Muller condition [Mul63], Landweber’s study of the complexity of ω-regular
languages [Lan69], McNaughton’s works on ω-regular expressions [McN66] and
infinite games [McN93], Rabin’s decidability result of S2S [Rab69], Wagner’s pa-
per introducing a hierarchy of complexity [Wag79], etc. Following this tradition,
virtually all handbooks and surveys about automata on infinite objects use state-
based acceptance [Eil74, Tho90, Tho97, GTW02, PP04, BK08, Kup18, BCJ18,
WS21, Löd21, EB23]. To the best of our knowledge, the only exceptions are
the recent book Games on Graphs edited by Fijalkow [Fij+25], and the book An
Automata Toolbox by Bojańczyk [Boj].

The rise of transition-based acceptance. Automata with “effects” on
transitions, such as sequential transducers2 [Sha48, Sect.8][Mea55, Sch61a]

1Corroborating this claim can be quite challenging. The use of state-based acceptance can be
observed, for instance, in the first line of the proof of Lemma 12 (page 8). In Büchi’s 1969 paper
with Landweber [BL69a], this is a bit simpler to appreciate in the definitions of SupZ and U, in
the second page of the paper.

2Transducers with output on states were also considered by Moore [Moo56]. However, the
model with output on transitions popularized by Mealy [Mea55] rapidly became the norm.

or weighted automata [Sch61b] have been considered since the beginnings of
automata theory. Transition-based ω-automata made their first, though modest,
appearance in the mid-80s. To the best of our knowledge, their first occurrences
were in Michel’s work on the connection between Linear Temporal Logic (LTL)
and automata [Mic84], and in Kurshan’s paper on the complementation of deter-
ministic Büchi automata [Kur87].3 In the early 90s, Le Saëc made more system-
atic use of this model [Saë90, SPW91, VSL95]. He reintroduced transition-based
Muller automata under the name of table-transition automata, and characterised
which languages admit a unique morphism-minimal Muller automaton: those that
can be recognised by a Muller automaton with one state per residual of the lan-
guage [VSL95, Cor. 5.15]. This characterisation no longer holds for state-based
automata (see Example 10 for an illustration on how the previous property is
sensitive to the placement of the acceptance condition). Despite the works of Le
Saëc, transition-based automata were used only scarcely in the following years.

Some notable exceptions to the predominant use of state-based automata in the
2000s are given by a series of works concerning the translation of LTL formulas
to automata. In 1999, Couvreur proposed a translation using transition-based gen-
eralised Büchi automata [Cou99]. A similar algorithm was the base for the tool
ltl2ba by Gastin and Oddoux [GO01] (the importance of the use of transition-
based automata in this work is discussed in [GL02]). The use of transition-based
acceptance in this subarea was further fostered by the tool Spot [DP04, Dur+22],
influenced by Couvreur’s approach. More recently, transition-based automata
have been adopted in the HOA format [Bab+15], and it is the primary model
in other tools such as Owl [KMS18] or ltl3tela [Maj+19]. We refer to [Dur07,
pages 66-67] for an overview of the use of state-based and transition-based ap-
proaches to the translation of LTL prior to 2007.

A turning point occurred in 2019, as Abu Radi and Kupferman proved that
transition-based history-deterministic coBüchi automata can be minimised in
polynomial time [AK19], while Schewe showed that the corresponding problem
is NP-complete for state-based automata [Sch20]. Since then, there is an increas-
ing interest for transition-based ω-automata, and, as discussed in Sections 3 and 4,
many recent results rely on the use of this model.

Why was the use of state-based acceptance widespread? We may won-
der why state-based automata were the ubiquitous model for more than 50 years.
Probably the most influential factor is that ω-automata generalise automata over
finite words, for which acceptance over states is a natural choice. Some construc-

3The possibility of using transition-based acceptance was previously suggested in [Par81, Sec-
tion 8.2]. Some sources [Red99] mention that transition-based acceptance was already suggested
by Redziejowski in 1972 [Red72]; unfortunately we could not get access to this paper.

tions of ω-automata build on automata over finite words, and for some of these,
state-based acceptance appears naturally.

One such example is the characterisation of languages recognised by deter-
ministic Büchi automata as limits of languages of finite words [Lan69]. A lan-
guage L ⊆ Σω can be recognised by a deterministic Büchi automaton if and only
for some regular language of finite words Lfin ⊆ Σ

∗ we have:

L =
−−→
Lfin = {w ∈ Σω | w contains infinitely many prefixes in Lfin}.

Building a state-based Büchi automaton from a deterministic automaton recog-
nising Lfin is easy: we just need to interpret the final states of the automaton as
accepting Büchi states. The converse direction follows similarly.

Structure of the survey. We start by showing in Section 2 that we can
switch between state and transition-based acceptance with at most a linear blow-
up. However, we already notice a key difference: going from a state-based au-
tomaton to a transition-based one does not require adding any additional state,
while deciding the minimal number of states required to perform the converse
transformation is NP-hard (Proposition 3). In Sections 3 and 4, we study prob-
lems on ω-automata and games where the choice between transition-based and
state-based acceptance may strongly affect the complexity of a given problem. In
Section 5 we explore transition-based acceptance for automata over finite words.
Finally, in Section 6 we discuss some of the reasons causing the striking differ-
ences between the two models.

Definitions are introduced progressively as needed. The reader may use the
hyperlinks on technical terms to quickly see their definition.

2 From states to transitions and vice versa
At first sight, it could seem that there is no great difference between state-based
or transition-based acceptance: we can go from one model to the other with at
most a linear blow-up. However, transition-based automata are always smaller,
and going from a state-based automaton to a transition-based one in an optimal
way is NP-hard, as stated in Proposition 3.

Proposition 1. Every state-based automaton can be relabelled with an equivalent
transition-based acceptance condition.

Proof. Let Acc ⊆ Qω be the acceptance condition of the automaton, and let
γ : ∆ → Q be the function assigning to each transition (q, a, q′) its source state
q. Then, (γ,Acc) is an equivalent transition-based acceptance condition. □

In general, we cannot relabel in a similar manner a transition-based automaton
to obtain an equivalent state-based one. We can, however, build an equivalent
state-based automaton paying a small blow-up on the number of states.

Proposition 2. Every transition-based automaton admits an equivalent state-
based automaton with at most |Q||∆| + |Qinit| states.

Proof. Let A be a transition-based automaton with acceptance Acc ⊆ ∆ω. We
define the automaton having:

• States: (Q × ∆) ∪ Qinit.

• Transitions: For every transition t′ = q
a
−→ q′ in A, we let (q, t)

a
−→ (q′, t′),

and q
a
−→ (q′, t′) if q ∈ Qinit.

• Initial states: Qinit.

• Acceptance condition: We define γ : Q → ∆ ∪ {x} by: γ(q, t) = t and
γ(q0) = x if q0 ∈ Qinit. The acceptance condition is given by the colouring γ
and the language x · Acc.

It is immediate to check that the obtained automaton is equivalent toA. □

In both proofs above, the obtained automaton is not only equivalent to the
original one, but there is a bijection between the runs of both. We formalise this
idea with the notion of locally bijective morphisms [Cas+24, Def.3.3].

Given two automata A,A′ over the same alphabet, a locally bijective mor-
phism is a function φ : Q→ Q′ such that:

• φ(Qinit) = Q′init,

• for all (q, a, q′) ∈ ∆, (φ(q), a, φ(q′)) ∈ ∆′,

• for all (p, a, p′) ∈ ∆′ and q ∈ φ−1(p), there is q′ ∈ φ−1(p′) such that
(q, a, q′) ∈ ∆, and

• a run ρ inA is accepting if and only if φ(ρ) is accepting inA′.

Intuitively, if φ : A → A′ is a locally bijective morphism, it means that A
has been obtained from A′ by duplicating some of its states, for instance, via a
product construction. For example, the automaton on the right of Figure 1 admits
a locally bijective morphism to the automaton on its left.

Proposition 1 implies that for every state-based automaton there is a transition-
based automaton of same size admiting a locally bijective morphism to it (the
automaton itself). However, in the other direction, deciding whether there is
a small state-based automaton admiting a locally bijective morphism towards a
given transition-based automaton is hard, already for Büchi automata.

Proposition 3. The following problem is NP-complete:

Input: A transition-based Büchi automatonAtr and a positive integer n.
Question: Is there a state-based Büchi automaton with n states admitting

a locally bijective morphism toAtr?

Proof. To show NP-hardness, we use the reduction from Vertex Cover given by
Schewe to show the NP-completeness of the minimisation of state-based deter-
ministic Büchi automata [Sch10].

Let G = (V, E) be an undirected graph. Consider the Büchi automaton AG

over the alphabet Σ = V with states QG = V , all of them initial, and transitions
u

v
−→ v for every (u, v) ∈ E, and for u = v. For the Buchi condition, all transitions

are accepting except the self-loops v
v
−→ v. This automaton recognises the paths

in G, allowing repetition of vertices, but that visit at least two different vertices
infinitely often.

Let k be the size of a minimal vertex cover of G. We claim that there is a state-
based Büchi automaton with |V |+k states admitting a locally bijective morphism to
AG, and that this is optimal. To obtain such a state-based automaton, we duplicate
every state v that is part of a given vertex cover. Let v•, v− be the two copies of this
state, and set v• to be an accepting state. Among non-duplicated states, transitions
are as in AG. For duplicated states, we let vi

v
−→ v− for i ∈ {−, •} and ui

v
−→ v• for

(u, v) ∈ E. It is easy to chech that φ(vi) = v defines a locally bijective morphism.
For the converse direction, let A be a state-based Büchi automaton and

φ : A → AG a locally bijective morphism. For every state v in AG, φ−1(v) must
contain a non-accepting state, as a run ending in vω is rejecting in AG. We claim
that the set of vertices such that φ−1(v) contains an accepting state is a vertex cover
of G. Indeed, for every edge (u, v) ∈ E, a word ending in (uv)ω is accepting in
AG, therefore, either φ−1(u) or φ−1(v) contains an accepting state.

The problem is in NP, as there is always such an automaton with 2|Q| states.
For n < 2|Q|, it suffices to guess an automaton Ast with n states and a locally
bijective morphism φ : Ast → Atr. □

In our opinion, the above propositions indicate that state-based acceptance is
often innapropriate. We believe that, in an ideal scenario, each state of a mini-
mal automaton should stand for some semantic properties of the language they
represent (in the case of automata over finite words, these are the residuals of the
language). This cannot be the case for state-based ω-automata, as some states
must be allocated to encode parts of the acceptance condition.

3 Minimisation and transformations of automata

In this section we study three problems relating to ω-automata: minimisation,
conversion of acceptance condition and determinisation. We discuss how the use
of transition-based or state-based acceptance can critically affect these problems.

3.1 Minimisation of coBüchi automata

The minimisation problem asks, given an automaton and a number n, whether
there is an equivalent automaton with at most n states. This problem admits differ-
ent variants, depending on the class of automata that constitutes the search space
(here we assume that this class is the same for the input and output automata).

In 2010, Schewe showed that the minimisation problem is NP-hard for most
types of deterministic state-based ω-automata, including Büchi, coBüchi or par-
ity [Sch10]. It came as a surprise when Abu Radi and Kupferman showed
that history-deterministic coBüchi automata can be minimised in polynomial
time [AK22] (conference version from 2019 [AK19]). Soon after, Schewe showed
that the same problem is NP-hard for state-based automata.4

An automaton is history-deterministic (abbreviated HD) if there is a resolver
σ : Σ∗×Σ→ ∆, such that for every word w accepted by the automaton, the run over
w built following the transitions given by σ is accepting. History-deterministic
coBüchi automata are as expressive as deterministic ones, but they can be expo-
nentially more succinct [KS15].

Proposition 4 ([AK22],[Sch20]). History-deterministic transition-based coBüchi
automata can be minimised in polynomial time.

The minimisation problem for history-deterministic state-based coBüchi au-
tomata is NP-complete.

The work of Abu Radi and Kupferman provided the basis of many sub-
sequent results, including new representations for ω-regular languages [ES22,
Ehl25], minimisation of HD generalised coBüchi automata [Cas+25], passive
learning of HD coBüchi automata [LW25] and characterisations of positional lan-
guages [CO24]. The transition-based assumption is essential to all these works.

Schewe’s proof of NP-hardness of the minimisation of deterministic state-
based Büchi automata [Sch10] strongly relies on putting the acceptance over
states. In fact, as we have seen in Proposition 3, what this reduction shows is that
finding a minimal state-based automaton that simulates a transition-based one is

4Note that the critical difference lies in the output class, as we can convert the input from
state-based to transition-based in polynomial time.

NP-hard. It was not until 2025 that the minimisation of deterministic transition-
based Büchi and coBüchi automata was shown to be NP-hard, requiring a highly
technical proof [AE25].

3.2 Translation from Muller to parity

The complexity of the acceptance condition used by an automaton may greatly af-
fect the computational cost of dealing with these automata. Namely, many prob-
lems are PSPACE-hard for Muller automata [HD05], but become tractable for
parity automata [Cal+22, Bok18]. Therefore, an important task is to simplify the
acceptance condition of a given automaton. In practice, this usually takes the fol-
lowing form: given an automaton using a Muller condition, build an equivalent
automaton using a parity condition.

The parity and Muller conditions are defined as follows:

• parity(d) = {w ∈ {1, . . . , d}ω | lim inf w is even}.

• Muller(F) = {w ∈ Cω | Inf(w) ∈ F }, for F ⊆ P(C) a family of subsets and
Inf(w) the set of colours that appear infinitely often in w.

Recently, an optimal transformation has been introduced – based on a struc-
ture called the Alternating Cycle Decomposition (ACD) – transforming a Muller
automatonA into a parity one [Cas+24]. Formally, it produces a transition-based
parity automaton that admits a locally bijective morphism to A and with a min-
imal number of states among parity automata admiting such a morphism. This
transformation can be performed in polynomial time provided that the ACD can
be computed efficiently; this is the case for example if the acceptance condition
ofA is generalised Büchi, defined as follows:

• genBuchi = {w ∈ P(C)ω |
⋃

A∈Inf(w)
A = C}.

Proposition 5 (Follows from [Cas+24, Thm. 5.35]). Given a generalised Büchi
automatonA, we can build in polynomial time a transition-based Büchi automa-
ton admiting a locally bijective morphism to A that has a minimal number of
states among Büchi automata admitting locally bijective morphisms toA.

However, the optimality result of the ACD-transformation strongly relies on
the use of transition-based acceptance in the output automaton, as the previous
problem becomes NP-hard for state-based automata.

Proposition 6. The following problem is NP-complete:

Input: A state-based generalised Büchi automatonA and an integer n.
Question: Is there a state-based Büchi automaton with n states admitting

a locally bijective morphism toA?

Proof. We can use the same reduction as in the proof of Proposition 3 (which
in turn comes from [Sch10]). Indeed, we can replace the transition-based Büchi
condition of the automatonAG by a state-based generalised Büchi condition. □

3.3 Determinisation of Büchi automata
The determinisation of Büchi automata is a fundamental problem in the theory of
ω-automata, studied since the introduction of the model [Büc62]. The first asymp-
totically optimal determinisation construction is due to Safra [Saf88], which trans-
forms a Büchi automaton into a deterministic Rabin one. In 1999, Redziejowski
proposed a variant for building a transition-based automaton from a given ω-
regular expression [Red99]. Later on, Piterman [Pit06] and Schewe [Sch09] fur-
ther improved Safra’s construction, reducing the number of states of the final au-
tomaton (see also [Red12]). Schewe’s construction transforms a Büchi automa-
ton of size n into a deterministic Rabin automaton of size at most sizeDet(n),
which is naturally equipped with a transition-based acceptance condition (with
sizeDet(n) = o((1.65n)n)). In 2009, Colcombet and Zdanowski [CZ09] showed
that the Piterman-Schewe construction is tight (up to 0 states!) as we precise now.

Proposition 7 ([CZ09]). There exists a family of Büchi automataAn with n states,
such that a minimal transition-based deterministic Rabin automaton equivalent to
An has sizeDet(n) states.

We can obtain a state-based automaton by augmenting the number of states,
but doing so we no longer have a matching lower bound. No such tight bounds are
known for the determinisation of Büchi automata towards state-based automata.

The complementation and determinisation problems for Büchi and generalised
Büchi automata with transition-based acceptance were further studied by Vargh-
ese in his PhD Thesis [Var14]. In the works of Schewe and Varghese [SV12,
SV14], they point out the suitability of transition-based acceptance for the study
of transformations of automata.

4 Games on graphs and strategy complexity
A game is given by a directed graph G = (V, E) with a partition of vertices into
those controlled by a player Eve and those controlled by a player Adam, a initial
vertex and a winning condition defined in the same way as the acceptance condi-
tion of automata (which can be state-based or transition-based). The players move

a token in turns producing an infinite path, and Eve wins if this path belongs to
the winning condition.

An important concept with applications for the decidability of logics [BL69b,
GH82] and verification [BCJ18] is that of strategy complexity: how complex is
it to represent a winning strategy? The simplest kind of strategies are positional
ones. A strategy is positional if it can be represented by a function σ : V →
E: when in a vertex v controlled by Eve, she plays the transition σ(v). More
generally, a strategy is said to use finite-memory if the choice at a given moment
only depends on a finite amount of information from the past, or, said differently,
it can be implemented by a finite automaton (we refer to [Fij+25, Section 1.5] for
formal definitions).

As already noticed by Zielonka [Zie98], and as we will see next, strategy
complexity is quite sensitive to the placement of the winning condition.

4.1 Bipositionality over infinite games
We say that a language Win ⊆ Cω is positional if for every game with winning
condition Win, if Eve has a winning strategy, she has a positional one. A lan-
guage Win is bipositional if both Win and its complement are positional, or, said
differently, if both Eve and Adam can play optimally using positional strategies.
Depending on whether we consider games with transition-based or state-based
winning condition, we will say accordingly positional over transition/state-based
games.

A celebrated result in the area is the proof of bipositionality of parity lan-
guages [EJ91, Mos84]. In 2006, Colcombet and Niwiński proved that these are the
only prefix-independent bipositional languages over infinite game graphs [CN06],
establishing an elegant characterisation of bipositionality. As indicated in the title
of their paper, this characterisation only holds for transition-based games.

Proposition 8 ([CN06]). A prefix-independent language Win ⊆ Cω is bipositional
over transition-based games if and only if there is d ∈ N and a mapping ϕ : C →
{1, . . . , d} such that w ∈ Win if and only if ϕ(w) ∈ parity(d).

Proposition 9 ([Zie98, Section 6]). There is a prefix-independent language that
is bipositional over totally-coloured state-based games, but is not equivalent to
parity(d) for any d.

Proof sketch. An example of such a language is

Win = {w ∈ {a, b}ω | both a and b appear infinitely often in w}.

Intuitively, if Eve is in a vertex coloured a, she can follow a strategy leading to a
vertex coloured b in a positional way (and vice-versa).

From Adam’s point of view, if he can win, there are some vertices from which
he can force to never produce ‘a’ or force to never produce ‘b’ (and this can
be done positionally). Removing those vertices, we define a positional strategy
recursively. (Note that this can also be done for transition-based games, in fact,
from Adam’s point of view, Win is a Rabin condition, which are positional.) □

The characterisation of bipositionality was generalised to all (not necessar-
ily prefix-independent) languages in [CO24, Thm. 7.1]. A necessary condition
for bipositionality is that the language should be recognised by a transition-based
deterministic parity automaton with one state per residual of the language. This
property is very sensitive to the placement of the acceptance condition, if suf-
fices to consider the language Buchi that cannot be recognised by a state-based
automaton with a single state. The next example shows another version of this.

Example 10. Consider the language

L = {w ∈ {a, b}ω | if letter ‘a’ occurs in w then it appears infinitely often}.

This language has two residuals: ε−1L and a−1L. It can be recognised by a
transition-based parity automaton (even a Büchi automaton) with two states, as
shown in Figure 2. One can check that it also satisfies the other conditions
from [CO24, Thm. 7.1], so it is bipositional. However, it is not possible to recog-
nise L with a state-based parity automaton with only 2 states.

b•
a

b

a
•

Figure 2: A Büchi automaton recognising the bipositional language of words that
either contain no a, or infinitely many a’s. This automaton has one state per resid-
ual of the language. A state-based parity automaton recognising this language
must have at least 3 states.

4.2 Positionality via monotone graphs
Recently, Ohlmann characterised positionality by means of monotone univer-
sal graphs [Ohl23]. Not only this characterisation concerns positionality over

transition-based games, but the main notion of monotone graph radically uses the
colouring on transitions. An ordered edge-coloured graph is monotone if when-

ever v
a
−→ u, v ≤ v′ and u′ ≤ u, then the edge v′

a
−→ u′ also appears in the graph.

Such kind of properties can only be naturally phrased in edge-coloured graphs.

Universal monotone graphs have been used to study the algorithmic com-
plexity of solving different types of games on graphs, such as parity and mean-
payoff [Col+22], and the above characterisation has been generalised to the mem-
ory of languages [CO25a].

4.3 The memory of ω-regular languages

The memory of a language Win is the minimal m ∈ N such that in any game
with objective Win, if Eve has a winning strategy, she has one implemented by an
automaton with at most m states. A result with major implications in logic is the
fact that ω-regular languages have finite-memory [BL69b, GH82].

Recently, Casares and Ohlmann gave an effective way of computing the mem-
ory of ω-regular languages [CO25b], based on a characterisation using the notion
of ε-completable parity automata. The definition of this notion is rooted in the
use of transition-based acceptance: A parity automaton is ε-completable if for
every pair of states q, q′ and even colour x of the parity condition, we can either

add a transition q
ε:x
−−→ q′ or a transition q′

ε:x+1
−−−−→ q without modifying the language

recognised by the automaton.

In 2023, Bouyer, Randour and Vandenhove showed that ω-regular languages
are exactly those that are arena-independent finite-memory determined (that is,
both Eve and Adam admit finite automata implementing strategies in every game
with winning condition Win) [BRV23, Thm. 7]. The use of transition-based ac-
ceptance is key for the construction of a parity automaton recognising a language
with the above property [BRV23, Section 5].

In 2021, Casares showed that the smallest automata that can be used for
implementing winning strategies in every game using a given Muller language
Muller(F) are exactly deterministic Rabin automata recognising Muller(F) [Cas22,
Thm. 27]. In a related work, Casares, Colcombet and Lehtinen showed that the
memory of Muller(F) coincides with the number of states of a minimal history-
deterministic Rabin automaton recognising this language [CCL22, Thm. 5]. Both
results only apply to transition-based Rabin automata.

5 What about finite words?
In light of the results above, one naturally wonders whether a shift to transition-
based acceptance would also be beneficial for automata on finite words (DFAs in
the following). Classical finite automata have a robust mathematical theory – no-
tably, every regular language admits a canonical minimal DFA – and state-based
acceptance is the undisputed preferred option for them. However, transition-based
variants have been considered recently in works about synthesis of LTL over fi-
nite traces [Shi+20, Xia+21, Xia+24, Dur+25] and about translations of regular
expressions over valuations of atomic propositions [MRD24].

Definition of acceptance. One option to define the acceptance of transition-
based finite automata is simply to specify a set of final transitions: a run is ac-
cepting if its last transition belongs to this set.5 More generally, following the
definition of ω-automata used in this document, we define the acceptance condi-
tion of a transition-based DFA as a language Acc ⊆ ∆∗: a run is accepting if it
belongs to Acc. If Acc is a regular language, such an automaton accepts a regu-
lar language (we can convert it into a classical DFA by a product construction).
Using a colouring function γ : ∆ → {−,⊚} as in the introduction, we can recast
acceptance by final transitions as automata using the following condition:

AccLast = {w ∈ {−,⊚}∗ | the last letter of w is ⊚}.

The role of prefix-independence and the empty word. When using the above
general model of transition-based DFAs we encounter one inconvenience: the
language recognised starting from a given state q may be ill-defined, since the set
of runs accepted from q depends on the particular path that led to q from the initial
state. Independence from the past of the run is a key property, notably for defining
a minimal DFA, where each state corresponds to a left-quotient of the language.

This problem would not arise if the acceptance condition Acc was prefix-
independent, that is, if for all sequences of transitions u0 and u:

u0u ∈ Acc ⇐⇒ u ∈ Acc.

However, the only prefix-independent languages of finite words are the empty
and the full language, which cannot be used to recognise non-trivial languages.
Indeed, if Acc is prefix-independent, then u ∈ Acc ⇐⇒ ε ∈ Acc for all u ∈ Σ∗.

Nevertheless, the language AccLast is almost prefix-independent, as it satisfies:

for all u0 and u , ε, u0u ∈ AccLast ⇐⇒ u ∈ AccLast .

5In this case, we should also specify whether the empty word is accepted.

This property makes AccLast well-suited for state-based acceptance, as the ac-
ceptance of ε can be encoded in a state, obtaining a definition of acceptance that
is agnostic to the way we reach a given state.

Minimal transition-based DFA. It is well-known that the minimal state-based
DFA of a regular language L ⊆ Σ∗ is given by the equivalence classes of the
Myhill-Nerode congruence. In order to fit the transition-based setting, we can
coarsen this relation, disregarding separations by the empty word:

u ∼̇L v
def
⇐⇒ for all w , ε, uw ∈ L ⇐⇒ vw ∈ L.

The next lemma is an easy check.

Lemma 11. The relation ∼̇L is an equivalence relation over Σ∗. Moreover, if
u ∼̇L v, then ua ∼̇L va for all a ∈ Σ.

In the following, by a transition-based DFA we mean one with acceptance by
final transitions, that is, using the acceptance condition AccLast.

Proposition 12. Every regular language of finite words has a unique minimal
transition-based DFA, which has one state per equivalence class of ∼̇L.

Proof. Let L ⊆ Σ∗ be a regular language. Consider the DFA Amin having as
states the ∼̇L-classes of L, with [ε] the initial state, and transitions [u]

a
−→ [ua],

where accepting transitions are those with ua ∈ L. Moreover, we need to specify
whether ε ∈ L; in the positive case, we let the initial transition of the automaton be
accepting. This automaton is well-defined and recognises L thanks to Lemma 11.

LetA be a transition-based DFA recognising L. For a state q inA, let

LAε (q) = {w ∈ Σ+ | the run over w from q is accepting}.

It holds that, if u labels a path from the initial state to q, then LAε (q) = LAmin
ε ([u]).

Moreover, LAmin
ε (u) , LAmin

ε ([v]) if u ̸∼̇L v. Therefore, Amin has at most as many
states asA, and in case of equality, they are isomorphic. □

Proposition 12 implies that transition-based DFAs are not larger than state-
based ones. Moreover, they can be strictly smaller, as shown by the following
example and Corollay 14 (see also [MRD24, Figs. 2-4]).

Example 13. Let Σ = {a, b} and consider the language of words that either have
even lenght and end by ‘b’, or have odd length and end by ‘a’. A minimal state-
based DFA for this language, with 4 states, is given on the left of Figure 3. Note
that the states qa and qb are not equivalent, as only one of them is accepting.
However, Lε(qa) = Lε(qb) (idem for pa and pb). Therefore, we can merge these
states, obtaining a transition-based DFA with only 2 states.

qa pa

pb qb

a

b

a

ba
b

a

b

q p
b

a}

a

b
}

Figure 3: Two automata recognising the language L = {w ∈ {a, b}+ |
w is of even lenght if and only if it ends by ‘b’}. The automaton on the left is the
minimal state-based DFA of L, and the automaton on the right is its minimal
transition-based DFA.

Generalising the previous example and using Proposition 12, we obtain:

Corollary 14. Every transition-based DFA admits an equivalent state-based DFA
with at most twice as many states. This bound is tight: there is a family of lan-
guages for which a minimal state-based DFA has twice as many states as a mini-
mal transition-based DFA.

Proof. For the first claim, it suffices to note that the index of the classical Myhill-
Nerode congruence is at most twice the index of ∼̇L.

For the second claim, let Σ = {a, b} and consider the language:

Ln = {w ∈ Σ+ | w ends by ‘b’ if and only if |w| ≡ 0 mod n}.

The congruence ∼̇L has n classes, corresponding to the remainder of |w|modulo n.
The Myhill-Nerode congruence has 2n classes, as words ending with a different
letter are not equivalent. □

We note that such a gap does not appear for non-deterministic automata. In-
deed, every transition-based NFA can be converted into an equivalent state-based
NFA with only one more state. It suffices to add a sink state, which will be the
only accepting state, and duplicate all accepting transitions redirecting one copy
towards this sink. (This operation increases the number of transitions though.)

Where does this leave us? As we have seen, transition-based DFAs can be
smaller than classical state-based ones. Moreover, most standard constructions
adapt to the transition-based setting without problem (determinisation, product
construction, removal of ε-transitions, etc). Some of them, such as the conversion
of regular expressions, may even benefit from the use of transition-based accep-
tance [MRD24]. Transition-based DFAs can be of particular interest when used

as an intermediate step for the construction of ω-automata [MRD24], or when the
acceptance of the empty word is irrelevant, as in LTL f semantics.

However, there are signs pointing towards the canonicity of state-based accep-
tance for DFAs. Notably, the syntactic monoid of a language equals the transi-
tion monoid of its minimal state-based DFA [Pin, Prop. 4.28]. It is unclear to us
what would be the correct way to recover the syntactic monoid from a transition-
based DFA. Other questions regarding the transition-based model remain open.
For instance, are there acceptance conditions other than AccLast that lead to unique
minimal DFAs for all regular languages?

6 Outlook: Why all these differences?
We have seen various situations where transition-based acceptance is more ad-
vantageous, both for practical and theoretical reasons. The following question
arises naturally: What are the fundamental differences between state-based and
transition-based models that lead to such contrasting properties?

Composition of transitions. A basic operation at the heart of many reason-
ings in automata theory is composition of transitions. If an automaton contains

transitions p
a
−→ q and q

b
−→ r, one can go from p to r by reading ab, and any

“effect” of this path should be the result of concatenating the effects of these two
transitions. That is, a suitable automata model should allow to add the transition
p

ab
−→ r. For automata over infinite words, the acceptance of the automaton ob-

tained by adding this transition can only be defined in a sensible way by using a
transition-based condition.

This composition operation is key for the celebrated connection between au-
tomata and algebra. The suitability of transition-based models for algebraic ap-
proaches is explicitly mentionned in Michel’s work introducing transition-based
ω-automata [Mic84, Section II]:

Using unstable graphs, instead of a set of nodes that must be traversed in-
finitely often, is better suited to the algebraic operations we will define [...] 6

Similarly, one of LeSaëc’s motivations for the use of transition-based au-
tomata was to obtain an algebraic proof of McNaughton’s theorem for infinite
words [SPW91]. The Muller automaton obtained from a given semigroup is nat-
urally transition-based, see [SPW91, page 18] and [Col11, Section 6].

6In French in the original: L’utilisation de graphes instables au lieu d’un ensemble de
nœuds dans lequel on doit passer infiniment souvent se prête mieux aux opérations al-
gébriques que nous définirons [...].

As mentioned in Section 4, composition of transitions is also essential in the
fruitful approach for solving and analysing infinite duration games based on uni-
versal graphs, which relies on the notions of monotonicity, ε-completion and the
technique of saturation (for the latter, see [CF18, Section 4], [Col+22, Section 4.1]
or [Ohl23, Section 3.3]).

We note, however, that in the case of finite words, this does not provide strong
evidence in favour of transition-based acceptance. Indeed, state-based DFAs also
allow for composition of transitions, as the acceptance of a run is only determined
by its final destination.

Paths in graphs. As explained in the introduction, an acceptance condition
is a representation of a subset of paths in an automaton. A path in a graph is
commonly defined as a sequence of edges. In fact, a sequence of vertices does not
completely determine a path, as different paths may share the same sequence of
vertices. This is the main reason why transition-based automata are more succinct
than state-based ones.

Final thoughts
The collection of results presented in this survey indicates that, despite the fact
that the size of state-based and transition-based automata only differ by a linear
factor, transition-based models are easier to manipulate and have a nicer theory.
We therefore advocate adopting transition-based acceptance as the default model
for ω-automata.

We expect that the use of transition-based acceptance will ease the finding of
automata-based characterisation of classes of languages. This has already been
the case, for example, in the characterisation of positional ω-regular languages
based on parity automata with a particular structure [CO24, Thm. 3.1].

In the same spirit, it appears that the use of transition-based models will be
required for obtaining canonical models of automata over infinite words or trees.
Steps in this direction have already been made [ES22, Ehl25, LW25], building on
the description of canonical history-deterministic coBüchi automata by Abu Radi
and Kupferman [AK22].

Acknowledgements. I warmly thank Thomas Colcombet for many discus-
sions on the benefits of transition-based acceptance, Alexandre Duret-Lutz for
valuable comments on automata over finite words and for sharing many historical
references, Géraud Sénizergues for pointing me to the works of Bertrand Le Saëc
and Pierre Ohlmann for helpful feedback on a draft of this paper.

References
[AE25] Bader Abu Radi and Rüdiger Ehlers. “Characterizing the polynomial-

time minimizable ω-automata”. In: Corr abs/2504.20553 (2025). doi:
10.48550/ARXIV.2504.20553.

[AK22] Bader Abu Radi and Orna Kupferman. “Minimization and canoniza-
tion of GFG transition-based automata”. In: Log. Methods Comput.
Sci. 18.3 (2022). doi: 10.46298/lmcs-18(3:16)2022.

[AK19] Bader Abu Radi and Orna Kupferman. “Minimizing GFG transition-
based automata”. In: ICALP. Vol. 132. LIPIcs. 2019, 100:1–100:16.
doi: 10.4230/LIPIcs.ICALP.2019.100.

[Bab+15] Tomás Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz, Joachim
Klein, Jan Kretínský, David Müller, David Parker, and Jan Strejcek.
“The Hanoi Omega-Automata format”. In: CAV. Vol. 9206. 2015,
pp. 479–486. doi: 10.1007/978-3-319-21690-4_31.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT Press, 2008. url: https : / / mitpress . mit . edu /
9780262026499/principles-of-model-checking/.

[BCJ18] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann.
“Graph games and reactive synthesis”. In: Handbook of Model
Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem. Springer International Publishing, 2018,
pp. 921–962. doi: 10.1007/978-3-319-10575-8_27.

[Boj] Mikołaj Bojańczyk. An automata toolbox. Version of 7 February,
2025. url: https : / / www . mimuw . edu . pl / ~bojan / papers /
toolbox.pdf.

[Bok18] Udi Boker. “Why these automata types?” In: LPAR. Vol. 57. EPiC
Series in Computing. 2018, pp. 143–163. doi: 10.29007/c3bj.

[BRV23] Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. “Char-
acterizing omega-regularity through finite-memory determinacy of
games on infinite graphs”. In: Theoretics 2 (2023). doi: 10.46298/
theoretics.23.1.

[Büc62] J. Richard Büchi. “On a decision method in restricted second order
arithmetic”. In: Proc. Internat. Congr. on Logic, Methodology and
Philosophy of Science (1962), pp. 1–11.

[BL69a] J. Richard Büchi and Lawrence H. Landweber. “Definability in the
monadic second-order theory of successor”. In: J. Symb. Log. 34.2
(1969), pp. 166–170. doi: 10.2307/2271090.

https://doi.org/10.48550/ARXIV.2504.20553
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.1007/978-3-319-21690-4_31
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://doi.org/10.1007/978-3-319-10575-8_27
https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf
https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf
https://doi.org/10.29007/c3bj
https://doi.org/10.46298/theoretics.23.1
https://doi.org/10.46298/theoretics.23.1
https://doi.org/10.2307/2271090

[BL69b] J. Richard Büchi and Lawrence H. Landweber. “Solving sequential
conditions by finite-state strategies”. In: Transactions of the American
Mathematical Society 138 (1969), pp. 295–311. url: http://www.
jstor.org/stable/1994916.

[Cal+22] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and
Frank Stephan. “Deciding parity games in quasi-polynomial time”.
In: SIAM Journal on Computing 51.2 (2022), pp. 152–188. doi: 10.
1137/17M1145288.

[Cas22] Antonio Casares. “On the minimisation of transition-based Rabin
automata and the chromatic memory requirements of Muller condi-
tions”. In: CSL. Vol. 216. 2022, 12:1–12:17. doi: 10.4230/LIPIcs.
CSL.2022.12.

[Cas+24] Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, and
Karoliina Lehtinen. “From Muller to parity and Rabin automata:
Optimal transformations preserving (history) determinism”. In: The-
oretiCS Volume 3 (Apr. 2024). doi: 10.46298/theoretics.24.12.

[CCL22] Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. “On
the size of good-for-games Rabin automata and its link with the mem-
ory in Muller games”. In: ICALP. Vol. 229. 2022, 117:1–117:20. doi:
10.4230/LIPIcs.ICALP.2022.117.

[Cas+25] Antonio Casares, Olivier Idir, Denis Kuperberg, Corto Mascle, and
Aditya Prakash. “On the minimisation of deterministic and history-
deterministic generalised (co)Büchi automata”. In: CSL. Vol. 326.
2025, 22:1–22:18. doi: 10.4230/LIPICS.CSL.2025.22.

[CO25a] Antonio Casares and Pierre Ohlmann. “Characterising memory in in-
finite games”. In: Log. methods comput. sci. 21.1 (2025). doi: 10.
46298/LMCS-21(1:28)2025.

[CO24] Antonio Casares and Pierre Ohlmann. “Positional ω-regular lan-
guages”. In: LICS. ACM, 2024, 21:1–21:14. doi: 10.1145/3661814.
3662087.

[CO25b] Antonio Casares and Pierre Ohlmann. “The memory of ω-regular and
BC(Σ0

2) objectives”. In: ICALP. Vol. 334. 2025, 149:1–149:18. doi:
10.4230/LIPICS.ICALP.2025.149.

[Col11] Thomas Colcombet. “Green’s relations and their use in automata the-
ory”. In: LATA. Vol. 6638. 2011, pp. 1–21. doi: 10.1007/978-3-
642-21254-3_1.

http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916
https://doi.org/10.1137/17M1145288
https://doi.org/10.1137/17M1145288
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.46298/theoretics.24.12
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.4230/LIPICS.CSL.2025.22
https://doi.org/10.46298/LMCS-21(1:28)2025
https://doi.org/10.46298/LMCS-21(1:28)2025
https://doi.org/10.1145/3661814.3662087
https://doi.org/10.1145/3661814.3662087
https://doi.org/10.4230/LIPICS.ICALP.2025.149
https://doi.org/10.1007/978-3-642-21254-3_1
https://doi.org/10.1007/978-3-642-21254-3_1

[CF18] Thomas Colcombet and Nathanaël Fijalkow. “Parity games and
universal graphs”. In: Corr abs/1810.05106 (2018). url: http :
//arxiv.org/abs/1810.05106.

[Col+22] Thomas Colcombet, Nathanaël Fijalkow, Pawel Gawrychowski, and
Pierre Ohlmann. “The theory of universal graphs for infinite duration
games”. In: Log. Methods Comput. Sci. 18.3 (2022). doi: 10.46298/
lmcs-18(3:29)2022.

[CN06] Thomas Colcombet and Damian Niwiński. “On the positional de-
terminacy of edge-labeled games”. In: Theor. Comput. Sci. 352.1-3
(2006), pp. 190–196. doi: 10.1016/j.tcs.2005.10.046.

[CZ09] Thomas Colcombet and Konrad Zdanowski. “A tight lower bound
for determinization of transition labeled Büchi automata”. In: ICALP.
2009, pp. 151–162. doi: 10.1007/978-3-642-02930-1_13.

[Cou99] Jean-Michel Couvreur. “On-the-fly verification of linear temporal
logic”. In: World congress on formal methods in the development of
computing systems. Vol. 1708. 1999, pp. 253–271. doi: 10.1007/3-
540-48119-2_16.

[Dur07] Alexandre Duret-Lutz. “Contributions à l’approche automate pour la
vérification de propriétés de systèmes concurrents”. PhD thesis. Uni-
versité Pierre et Marie Curie (Paris 6), 2007. url: https://www.
lrde.epita.fr/~adl/dl/adl/duret.07.phd.pdf.

[DP04] Alexandre Duret-Lutz and Denis Poitrenaud. “SPOT: an extensible
model checking library using transition-based generalized Büchi au-
tomata”. In: MASCOTS. IEEE Computer Society, 2004, pp. 76–83.
doi: 10.1109/MASCOT.2004.1348184.

[Dur+22] Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Flo-
rian Renkin, Alexandre Gbaguidi Aisse, Philipp Schlehuber-Caissier,
Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément Gillard,
and Henrich Lauko. “From Spot 2.0 to Spot 2.10: What’s new?” In:
CAV. Vol. 13372. 2022, pp. 174–187. doi: 10.1007/978-3-031-
13188-2_9.

[Dur+25] Alexandre Duret-Lutz, Shufang Zhu, Nir Piterman, Giuseppe De Gi-
acomo, and Moshe Y. Vardi. “Engineering an LTLf synthesis tool”.
In: CIAA. To appear. 2025. url: http://arxiv.org/abs/2507.
02491.

[Ehl25] Rüdiger Ehlers. “Rerailing automata”. In: Corr abs/2503.08438
(2025). doi: 10.48550/ARXIV.2503.08438.

http://arxiv.org/abs/1810.05106
http://arxiv.org/abs/1810.05106
https://doi.org/10.46298/lmcs-18(3:29)2022
https://doi.org/10.46298/lmcs-18(3:29)2022
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/3-540-48119-2_16
https://www.lrde.epita.fr/~adl/dl/adl/duret.07.phd.pdf
https://www.lrde.epita.fr/~adl/dl/adl/duret.07.phd.pdf
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
http://arxiv.org/abs/2507.02491
http://arxiv.org/abs/2507.02491
https://doi.org/10.48550/ARXIV.2503.08438

[ES22] Rüdiger Ehlers and Sven Schewe. “Natural colors of infinite words”.
In: FSTTCS. Vol. 250. 2022, 36:1–36:17. doi: 10.4230/LIPIcs.
FSTTCS.2022.36.

[Eil74] Samuel Eilenberg. Automata, languages, and machines. A. Pure and
applied mathematics. Academic Press, 1974. url: https://www.
worldcat.org/oclc/310535248.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. “Tree automata, mu-calculus
and determinacy (extended abstract)”. In: FOCS. 1991, pp. 368–377.
doi: 10.1109/SFCS.1991.185392.

[EB23] Javier Esparza and Michael Blondin. Automata theory: An algorith-
mic approach. MIT Press, 2023. url: https://michaelblondin.
com/automata/.

[Fij+25] Nathanaël Fijalkow, C. Aiswarya, Guy Avni, Nathalie Bertrand, Pa-
tricia Bouyer, Romain Brenguier, Arnaud Carayol, Antonio Casares,
John Fearnley, Paul Gastin, Hugo Gimbert, Thomas A. Henzinger,
Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey, Benjamin
Monmege, Petr Novotný, Pierre Ohlmann, Mickael Randour, Ocan
Sankur, Sylvain Schmitz, Olivier Serre, Mateusz Skomra, Nathalie
Sznajder, and Pierre Vandenhove. Games on graphs: from logic and
automata to algorithms. Ed. by Nathanaël Fijalkow. Cambridge Uni-
versity Press, 2025. url: https://arxiv.org/abs/2305.10546.

[GO01] Paul Gastin and Denis Oddoux. “Fast LTL to Büchi automata trans-
lation”. In: CAV. Vol. 2102. 2001, pp. 53–65. doi: 10.1007/3-540-
44585-4_6.

[GL02] Dimitra Giannakopoulou and Flavio Lerda. “From states to transi-
tions: improving translation of LTL formulae to Büchi automata”.
In: FORTE. Vol. 2529. 2002, pp. 308–326. doi: 10.1007/3-540-
36135-9_20.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, eds. Automata
logics, and infinite games. Springer, Berlin, Heidelberg, 2002. doi:
10.1007/3-540-36387-4.

[GH82] Yuri Gurevich and Leo Harrington. “Trees, automata, and games”. In:
STOC. 1982, pp. 60–65. doi: 10.1145/800070.802177.

[HD05] Paul Hunter and Anuj Dawar. “Complexity bounds for regular
games”. In: MFCS. 2005, pp. 495–506. doi: 10.1007/11549345_43.

[KMS18] Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. “Owl: A
library forω-words, automata, and LTL”. In: ATVA. Vol. 11138. 2018,
pp. 543–550. doi: 10.1007/978-3-030-01090-4_34.

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.36
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.36
https://www.worldcat.org/oclc/310535248
https://www.worldcat.org/oclc/310535248
https://doi.org/10.1109/SFCS.1991.185392
https://michaelblondin.com/automata/
https://michaelblondin.com/automata/
https://arxiv.org/abs/2305.10546
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/11549345_43
https://doi.org/10.1007/978-3-030-01090-4_34

[KS15] Denis Kuperberg and Michał Skrzypczak. “On determinisation of
good-for-games automata”. In: ICALP. 2015, pp. 299–310. doi:
10.1007/978-3-662-47666-6_24.

[Kup18] Orna Kupferman. “Automata theory and model checking”. In: Hand-
book of Model Checking. Ed. by Edmund M. Clarke, Thomas A. Hen-
zinger, Helmut Veith, and Roderick Bloem. Springer International
Publishing, 2018, pp. 107–151. doi: 10.1007/978-3-319-10575-
8_4.

[Kur87] R.P. Kurshan. “Complementing deterministic Büchi automata in
polynomial time”. In: Journal of computer and system sciences 35.1
(1987), pp. 59–71. doi: https : / / doi . org / 10 . 1016 / 0022 -
0000(87)90036-5.

[Lan69] Lawrence H. Landweber. “Decision problems for omega-automata”.
In: Math. Syst. Theory 3.4 (1969), pp. 376–384. doi: 10 . 1007 /
BF01691063.

[Löd21] Christof Löding. “Automata on infinite trees”. In: Handbook of au-
tomata theory. Ed. by Jean-Éric Pin. 2021, pp. 265–302. doi: 10.
4171/AUTOMATA-1/8.

[LW25] Christof Löding and Igor Walukiewicz. “Minimal history-deterministic
co-Buchi automata: Congruences and passive learning”. In: Corr
abs/2505.14304 (2025). doi: 10.48550/ARXIV.2505.14304.

[Maj+19] Juraj Major, Frantisek Blahoudek, Jan Strejcek, Miriama Sasaráková,
and Tatiana Zboncáková. “Ltl3tela: LTL to small deterministic or
nondeterministic Emerson-Lei automata”. In: ATVA. Vol. 11781.
2019, pp. 357–365. doi: 10.1007/978-3-030-31784-3_21.

[MRD24] Antoine Martin, Etienne Renault, and Alexandre Duret-Lutz. “Trans-
lation of semi-extended regular expressions using derivatives”. In:
CIAA. Vol. 15015. 2024, pp. 234–248. doi: 10.1007/978-3-031-
71112-1_17.

[McN93] Robert McNaughton. “Infinite games played on finite graphs”. In:
Annals of Pure and Applied Logic (1993). doi: 10 . 1016 / 0168 -
0072(93)90036-D.

[McN66] Robert McNaughton. “Testing and generating infinite sequences by a
finite automaton”. In: Information and control 9.5 (1966), pp. 521–
530. doi: 10.1016/S0019-9958(66)80013-X.

[Mea55] George H. Mealy. “A method for synthesizing sequential circuits”.
In: Bell Syst. Tech. J. 34(5) (1955), pp. 1045–1079.

https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1007/BF01691063
https://doi.org/10.1007/BF01691063
https://doi.org/10.4171/AUTOMATA-1/8
https://doi.org/10.4171/AUTOMATA-1/8
https://doi.org/10.48550/ARXIV.2505.14304
https://doi.org/10.1007/978-3-030-31784-3_21
https://doi.org/10.1007/978-3-031-71112-1_17
https://doi.org/10.1007/978-3-031-71112-1_17
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/S0019-9958(66)80013-X

[Mic84] Max Michel. “Algebre de machines et logique temporelle”. In:
STACS. 1984, pp. 287–298. doi: 10.1007/3-540-12920-0_26.

[Moo56] Edward F. Moore. “Gedanken-experiments on sequential machines”.
In: Automata studies. Ed. by C. E. Shannon and J. McCarthy. 34.
1956, pp. 129–153.

[Mos84] Andrzej W. Mostowski. “Regular expressions for infinite trees and a
standard form of automata”. In: SCT. 1984, pp. 157–168. doi: 10.
1007/3-540-16066-3_15.

[Mul63] David E. Muller. “Infinite sequences and finite machines”. In: Sympo-
sium on Switching Circuit Theory and Logical Design. 1963, pp. 3–
16. doi: 10.1109/SWCT.1963.8.

[Ohl23] Pierre Ohlmann. “Characterizing positionality in games of infinite du-
ration over infinite graphs”. In: TheoretiCS 2 (2023). doi: 10.46298/
theoretics.23.3.

[Par81] David Park. “Concurrency and automata on infinite sequences”. In:
Theoretical computer science. Ed. by Peter Deussen. 1981, pp. 167–
183. doi: 10.1007/BFb0017309.

[PP04] Dominique Perrin and Jean-Eric Pin. Infinite words - Automata, semi-
groups, logic and games. Vol. 141. Pure and applied mathematics se-
ries. 2004.

[Pin] Jean-Eric Pin. Mathematical foundations of automata theory. Notes
of the MPRI lectures. Version of March 2025. url: https://www.
irif.fr/~jep/PDF/MPRI/MPRI.pdf.

[Pit06] Nir Piterman. “From nondeterministic Büchi and Streett automata to
deterministic parity automata”. In: LICS. 2006, pp. 255–264. doi: 10.
1109/LICS.2006.28.

[RS59] M. O. Rabin and D. Scott. “Finite automata and their decision prob-
lems”. In: IBM journal of research and development 3.2 (1959),
pp. 114–125. doi: 10.1147/rd.32.0114.

[Rab69] Michael O. Rabin. “Decidability of second-order theories and au-
tomata on infinite trees”. In: Transactions of the American Mathe-
matical Society 141 (1969), pp. 1–35. url: http://www.jstor.
org/stable/1995086.

[Red12] Roman R. Redziejowski. “An improved construction of determinis-
tic omega-automaton using derivatives”. In: Fundam. Informaticae
119.3-4 (2012), pp. 393–406. doi: 10.3233/FI-2012-744.

https://doi.org/10.1007/3-540-12920-0_26
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.46298/theoretics.23.3
https://doi.org/10.46298/theoretics.23.3
https://doi.org/10.1007/BFb0017309
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1147/rd.32.0114
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086
https://doi.org/10.3233/FI-2012-744

[Red99] Roman R. Redziejowski. “Construction of a deterministic-automaton
using derivatives”. In: RAIRO Theor. Informatics Appl. 33.2 (1999),
pp. 133–158. doi: 10.1051/ITA:1999111.

[Red72] Roman R. Redziejowski. The theory of general events and its appli-
cation to parallel programming. IBM Nordic Laboratory, 1972.

[Saë90] Bertrand Le Saëc. “Saturating right congruences”. In: RAIRO 24
(1990), pp. 545–559. doi: 10.1051/ita/1990240605451.

[SPW91] Bertrand Le Saëc, Jean-Eric Pin, and Pascal Weil. “Semigroups
with idempotent stabilizers and applications to automata theory”.
In: Int. J. Algebra Comput. 1.3 (1991), pp. 291–314. doi: 10.1142/
S0218196791000195.

[Saf88] Schmuel Safra. “On the complexity of ω-automata”. In: FOCS. 1988,
pp. 319–327. doi: 10.1109/SFCS.1988.21948.

[Sch10] Sven Schewe. “Beyond hyper-minimisation—minimising DBAs and
DPAs is NP-complete”. In: FSTTCS. Vol. 8. 2010, pp. 400–411. doi:
10.4230/LIPIcs.FSTTCS.2010.400.

[Sch20] Sven Schewe. “Minimising good-for-games automata is NP-complete”.
In: FSTTCS. Vol. 182. 2020, 56:1–56:13. doi: 10.4230/LIPIcs.
FSTTCS.2020.56.

[Sch09] Sven Schewe. “Tighter bounds for the determinisation of Büchi au-
tomata”. In: FOSSACS. 2009, pp. 167–181. doi: 10.1007/978-3-
642-00596-1_13.

[SV14] Sven Schewe and Thomas Varghese. “Determinising parity au-
tomata”. In: MFCS. 2014, pp. 486–498. doi: 10 . 1007 / 978 - 3 -
662-44522-8_41.

[SV12] Sven Schewe and Thomas Varghese. “Tight bounds for the deter-
minisation and complementation of generalised Büchi automata”. In:
ATVA. 2012, pp. 42–56. doi: 10.1007/978-3-642-33386-6_5.

[Sch61a] Marcel Paul Schützenberger. “A remark on finite transducers”. In: Inf.
Control. 4.2-3 (1961), pp. 185–196. doi: 10.1016/S0019-9958(61)
80006-5.

[Sch61b] Marcel Paul Schützenberger. “On the definition of a family of au-
tomata”. In: Inf. Control. 4.2-3 (1961), pp. 245–270. doi: 10.1016/
S0019-9958(61)80020-X.

[Sha48] Claude E. Shannon. “A mathematical theory of communication”. In:
Bell Syst. Tech. J. 27 (1948), pp. 623–656.

https://doi.org/10.1051/ITA:1999111
https://doi.org/10.1051/ita/1990240605451
https://doi.org/10.1142/S0218196791000195
https://doi.org/10.1142/S0218196791000195
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-662-44522-8_41
https://doi.org/10.1007/978-3-662-44522-8_41
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1016/S0019-9958(61)80006-5
https://doi.org/10.1016/S0019-9958(61)80006-5
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0019-9958(61)80020-X

[Shi+20] Yingying Shi, Shengping Xiao, Jianwen Li, Jian Guo, and Geguang
Pu. “SAT-based automata construction for LTL over finite traces”. In:
APSEC. IEEE, 2020, pp. 1–10. doi: 10.1109/APSEC51365.2020.
00008.

[Tho90] Wolfgang Thomas. “Automata on infinite objects”. In: Handbook of
theoretical computer science, volume B: formal models and seman-
tics. Ed. by Jan van Leeuwen. Elsevier and MIT Press, 1990, pp. 133–
191. doi: 10.1016/B978-0-444-88074-1.50009-3.

[Tho97] Wolfgang Thomas. “Languages, automata, and logic”. In: Handbook
of formal languages, volume 3: Beyond words. 1997, pp. 389–455.
doi: 10.1007/978-3-642-59126-6_7.

[VSL95] Do Long Van, Bertrand Le Saëc, and Igor Litovsky. “Characteriza-
tions of rational omega-languages by means of right congruences”.
In: Theor. Comput. Sci. 143.1 (1995), pp. 1–21. doi: 10.1016/0304-
3975(95)80022-2.

[Var14] Thomas Varghese. “Parity and generalised Büchi automata. Deter-
minisation and complementation”. PhD Thesis. University of Liver-
pool, 2014.

[Wag79] Klaus Wagner. “On ω-regular sets”. In: Information and control 43.2
(1979), pp. 123–177. doi: 10.1016/S0019-9958(79)90653-3.

[WS21] Thomas Wilke and Sven Schewe. “ω-automata”. In: Handbook of au-
tomata theory. Ed. by Jean-Éric Pin. European Mathematical Society
Publishing House, 2021, pp. 189–234. doi: 10.4171/Automata-
1/6.

[Xia+21] Shengping Xiao, Jianwen Li, Shufang Zhu, Yingying Shi, Geguang
Pu, and Moshe Vardi. “On-the-fly synthesis for LTL over finite
traces”. In: AAAI 35.7 (2021), pp. 6530–6537. doi: 10.1609/aaai.
v35i7.16809.

[Xia+24] Shengping Xiao, Yongkang Li, Xinyue Huang, Yicong Xu, Jianwen
Li, Geguang Pu, Ofer Strichman, and Moshe Y. Vardi. “Model-guided
synthesis for LTL over finite traces”. In: VMCAI. Vol. 14499. 2024,
pp. 186–207. doi: 10.1007/978-3-031-50524-9_9.

[Zie98] Wiesław Zielonka. “Infinite games on finitely coloured graphs with
applications to automata on infinite trees”. In: Theoretical Com-
puter Science 200.1-2 (1998), pp. 135–183. doi: 10.1016/S0304-
3975(98)00009-7.

https://doi.org/10.1109/APSEC51365.2020.00008
https://doi.org/10.1109/APSEC51365.2020.00008
https://doi.org/10.1016/B978-0-444-88074-1.50009-3
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1016/0304-3975(95)80022-2
https://doi.org/10.1016/0304-3975(95)80022-2
https://doi.org/10.1016/S0019-9958(79)90653-3
https://doi.org/10.4171/Automata-1/6
https://doi.org/10.4171/Automata-1/6
https://doi.org/10.1609/aaai.v35i7.16809
https://doi.org/10.1609/aaai.v35i7.16809
https://doi.org/10.1007/978-3-031-50524-9_9
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	Introduction
	From states to transitions and vice versa
	Minimisation and transformations of automata
	Games on graphs and strategy complexity
	What about finite words?
	Outlook: Why all these differences?

