THE DisTRIBUTED CoMPUTING COLUMN

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

This month, in the Distributed Computing Column, Amitabh Trehan explores
a seemingly simple problem: flooding with no memory. Here we have perhaps
the simplest possible distributed algorithm, and yet he illustrates surprising depth.
Along the way he raises the fundamental question of when is there only one algo-
rithmic solution to a problem (and what does that mean)?

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. We are also
interested in understanding the impact of distributed computing, inteprereted broadly. If you would

like to write such a column, please contact me.

AMNESIAC FLOODING
AND THE CURIOUS CASE OF UNIQUE ALGORITHMS

Amitabh Trehan Durham University
amitabh.trehan@durham.ac.uk

Abstract

Amnesiac Flooding [|6,[7,9] is the stateless/historyless/amnesiac vari-
ant of probably the oldest and simplest of distributed algorithms: (classic)
flooding. Beginning with a message at a set of initiator(s), the algorithm at
every node is simply a single rule: if the message is received from some
neighbour(s), immediately forward it to the rest of the neighbours. Note that
unlike classic flooding, no copy of the message or history of the flooding
is retained to ensure termination/quiescence of the messages. Yet, surpris-
ingly, amnesiac flooding begun from any set of initiators (even in differ-
ent rounds) terminates on all undirected graphs in the synchronous message
passing model. Moreover, it terminates in optimal rounds in bipartite graphs
and is at most twice as slow in non-bipartite graphs. A series of results have
followed the first discovery, improving our understanding of the process and
its variants.

Even more recently Austin, Gadouleau, Mertzios, and Trehan [3l|5] dis-
covered uniqueness - under certain reasonable conditions including state-
lessness, amnesiac flooding is the only algorithm that solves terminating
broadcast! As algorithm designers, the study of lower bounds and impossi-
bility results (no algorithm exists) is well established, but we are not aware
of results concerning uniqueness or, in general, even a sensible notion of
countability of solutions to problems. This article presents some of the fun-
damental and interesting results around amnesiac flooding from its discovery
to the present while not being a comprehensive review of the area that the
initial result has spawned.

1 Introduction

Sometimes sloppiness can lead to happy accidents—at least, it did so, in this case.
While giving a lecture which introduced the classic flooding algorithm, I neglected
to add the standard condition that a node discards a message if it sees it again

amitabh.trehan@durham.ac.uk

(making it necessary for the node to keep copies of messages flooded in the past).
The algorithm that remained (Definition , I named Amnesiac Flooding due to
its in-built forgetfulness. The classic flooding algorithm is one of the earliest and
simplest algorithms in the field of distributed computing. Informally, the classic
flooding algorithm is: if I have the message, I send it immediately to all my
neighbours (or to all my neighbours who have not sent me the message in the
preceding round); If I get the message again, I ignore the new receipt and do
nothing, Flooding is extremely useful because it is simple, it achieves broadcast
(i.e. the message is received by every node in the network) and it terminates in
optimal time (equivalent to the diameter of the network). Not surprisingly, it is
used as a fundamental building block for many other algorithms. For example, in
Peleg’s time optimal Leader Election algorithm [|11]], a leader is elected by every
node flooding the lowest ID it has seen so far to all its neighbours for diameter
number of rounds. As James Aspnes summarises: “Flooding is about the simplest
of all distributed algorithms. It is dumb and expensive but easy to implement” [2].

Amnesiac Flooding is thus so: if I have the message, I send it immediately to
all my neighbours who have not just sent me the message. This variant obviously
achieves broadcast, but does it terminate? The immediate answer of every expert
I talked to initially when I posed the question was that the process should be non-
terminating, i.e., messages would circulate ad-infinitum and all hell would break
loose in Network land. Nobody, however, had a proof either way, and the sub-
sequent stubborn search to prove the ‘obvious’ led to a fruitful path of discovery
and even to the creation of a wikipedia page [1]].

1.1 Amnesiac Flooding

The algorithm in the fault-free synchronous message passing model is defined as
follows. The definition below is for all initiators starting simultaneously (for more
general definitions, refer to [3-5]).

Definition 1.1. Amnesiac flooding algorithm (Synchronous). (from [5|] (Adapted
from [9]) Let G = (V, E) be an undirected graph, with vertices V and edges E
(representing a network where the vertices represent the nodes of the network and
edges represent the connections between the nodes). Computation proceeds in
synchronous ‘rounds’ where each round consists of nodes receiving messages sent
from their neighbours. A receiving node then sends messages to some neighbours
in the next round. No messages are lost in transit. The algorithm is defined by the
following rules:

(i) All nodes from a subset of sources or initial nodes I C 'V send a message M
to all of their neighbours in round 1.

(ii) In subsequent rounds, every node that received M from a neighbour in the
previous round, sends M to all, and only, those nodes from which it did not
receive M. Flooding terminates when M is no longer sent to any node in
the network.

In subsequent discussions, we shall restrict ourselves to a single initiator node
(i.e. [I| = 1), unless otherwise stated. In the next section (Section[I.2)), we try out
some simple examples by hand (FigureqI|and [2)).

1.2 Some Illustrative Examples

Consider two well known graphs in Figure [T} the hypercube (cube in 3 dimen-
sions) graph and the Petersen graph. These graphs are symmetric so the starting
point does not influence the execution of amnesiac flooding with respect to ter-
mination time. Consider AF on the hypercube first (Figure [I[a)) - it is easy to
see that it stops in round 3 when the node diagonally opposite the origin gets M
from all of its neighbours simultaneously. On the Petersen graph (Figure[I[b)), the
process terminates in 5 rounds stopping at the origin itself. In terms of diameter,
termination on the hypercube takes diameter time but the Petersen graph takes 2*
diameter + 1 rounds.

(a) AF on the Hypercube (b) AF on the Petersen Graph

Figure 1: Two well known graph topologies (Hypercube and the Petersen Graph)
and the execution of Amnesiac flooding (AF) (from the red coloured node) on
them. Arrows point to direction of the transmission with the label giving the round
number. Double headed arrows indicate the message crossing in both directions.

To get a better understanding, let’s look at some simpler base cases. Figure 2]
shows flooding over a line graph and a triangle graph. On the line on 4 nodes, the
process beginning with the node b in the figure terminates at the ends of the graph
taking only 2 rounds, which is equal to the eccentricity(the length of the shortest
longest path from a vertex in a graph) of node b in the graph (whose diameter
is 3). Note that a line is an example of a bipartite graph. In the triangle graph,

M M M M

=p~o—@ @7 @G—rE—0©—W©

(a) Round 1 (b) Round 2 (c) Round 3
M M
® ® ® ®
7\ LN
@f—9 @=t) @0 @—9
M M M M
(d) Round 1 (e) Round 2 (f) Round 3 (g) Round 4

Figure 2: AF over line and triangle networks with circled nodes sending M
in that round. On the above line, beginning with node b, AF terminates in 2
(< diameter = 3) rounds. When AF is executed over the above Triangle graph
beginning with node b, both node a and ¢ send M to each other in round 2 and
to b in round 3. This is an odd (# nodes) cycle topology (also, a clique) with
termination taking 2 * diameter + 1 rounds.

termination from any initiator (the graph being symmetric) takes only 3 rounds,
However, here the diameter is only 1. The triangle is also the smallest clique and
the smallest non-trivial cycle with an odd number of nodes (an important sub-
graph, as it turns out). Potentially, a kind of pattern is emerging: On a symmetric
bipartite graph (such as the hypercube) termination takes exactly diameter rounds,
on a (non-symmetric) bipartite graph such as a line, it may even take less than di-
ameter time but never more; On symmetric non-bipartite graphs such as a triangle
and the Petersen graph, it is taking time that is exactly twice the diameter of the
graph plus 1.

2 Termination

Ultimately, it turns out that this simple stateless process of Amnesiac flooding is
terminating and termination time stated in terms of eccentricity of the initiator
nodes has a strong co-relation with bipartiteness of the graph.

2.1 The First Proof

The first proof showing that amnesiac flood terminates on any graph appears in [6,
'7,9]. This is a proof by contradiction. It relies on a simple but useful observation:

Observation 2.1. Any event that occurs infinitely often, observed on a discrete

time scale, must have at least two occurrences separated by an even interval.

In fact, one can make a stronger claim - any event that occurs 3 or more times
must have two occurrences separated by an even interval. Let these three occur-
rences be at time steps #q, t,, and #3. If all these #’s are even, then all the intervals
are even (e.g. t, — t;). If all these #’s are odd, then again all the intervals are
even since the difference of two odd numbers is even. For the other cases, either
there are two even numbers and their difference is even, or there are two odd num-
bers, and their difference is again even. Using the observation above, if amnesiac
flooding was non-terminating, there must be some node that receives the message
infinitely often, in particular, at least 3 times, and therefore, at an even interval.
We assume such a node and prove by contradiction that there is no such node
showing that amnesiac flooding is terminating. The formal proof follows below
(from [7]]):

Definition 2.1. Let G be a graph. The round-sets Ry, Ry, . .. are defined as:

Ry is the singleton containing an initial node,
R; is the set of nodes which receive a message at roundi (i > 1).

Clearly, if R; = (0 for some j > 0, then R; = @ for all i > j. We shall refer to
rounds R;, where R; # 0, as active rounds.

Theorem 2.2. Any node g € G is contained in at most two distinct round-sets.

Proof. Define R to be the set of finite sequences of consecutive round-sets of the
form:

R=R,,....Ry,y wheres>0,d>0,and RN R,z #0. (1)

In @), s is the start-point s(R) and d is the duration d(R) of R. Note that, a node
g € G belonging to R, and Ry, may also belong to other R; in (I). If anode g € G
occurs in three different round-sets R;,, R;, and R;,, then the duration between R;,
and R;,, the duration between R;, and R;,, or the duration between R;, and R;, will
be even. Consider the subset REY of R of sequences of the form where d is
even. To prove that no node is in three round-sets, it suffices to prove that REY is
empty.

We assume that REY is non-empty and derive a contradiction.

Let RZ" be the subset of R comprising sequences of minimum (even) dura-
tion a?, 1.€.

RV ={ReR™ | VR eR™. dR) 2 d(R) =d) 2)

Clearly, if R®" is non-empty then so is RZ". Let R" € R7" be the sequence with

earliest start-point §, i.e.
B*:Rf""’R‘ﬂf (3)

where
VR e R . s(R)=s(R) =3 “4)

By (1), there exists g € R; N R;, 4. Choose node g’ which sends a message to g
inround §+d. As g’ is a neighbour of g, either g’ sends a message to g in round §
or g sends a message to g’ in round § + 1. We show that each of these cases leads
to a contradiction.

Case (1): g’ sends a message to g in round §

Figure 3: Node g’ sends a message to node g in round §: the first round of the
minimum even length sequence (of length) in which g repeats

Refer to Figure @ In this case, there must be a round § — 1 which is either
round O and g’ is the initial node, or g’ received a message in round § — 1.
Thus, the sequence

R =R; \,R;,....R.;, whereg € Ry NR,y (5)

has d(R") = (8 +d — 1) = (§ = 1) = d which is even and so R € R%". As
R" e RYY, by (4)

S(R") 2 s(R") (6)
But, from (5), s(@*/) = § — 1 and, from (4), s(R*) = §. Thus, by (6),

§-1=s(R)>s(R)=3

which is a contradiction.

Case (ii): g sends a message to g’ in round § + 1

Figure 4: Node g sends a message to node g’ in round § + 1: round § is the first
round of the minimum even length sequence (of length d) in which g repeats

Refer to Figure 4, By the definition of REY, the smallest possible value
of d is 2. However, it is not possible to have d = 2 in this case as then
R* = R;, Rs41, Ry1». This would mean that g sends a message to g’ in round
§ + 1. But, we chose g’ to be such that g’ sends a message to g in round
§+d = §+ 2. This cannot happen as g cannot send a message to g’ and g’
to g in consecutive rounds by the definition of rounds. Thus,

B* = Rﬁ,R§+1, e ’R§+J—1’R§+£2 Whefe §+ 1 < §+d_ 1
Consider the sequence

R*N = Rsi15-0 -5 R§+J_1 (7

As g’ receives a message from g in round § + 1 and g’ sends a message to
g in round § + d, it is clear that g’ € Ry,; N R, 5 ,. Thus, R € R. Asd

iseven, sois (§+d—1)—(§+ 1) = d — 2 and therefore I_%*Te REV. Now,
R* € R%Y and s0, as R” € REV, we have, by (2),

d(R") = d(R") ®)
As d(R"") = d — 2 from (7) and d(R*) = d from (3), we have, by (8),

d-2=dR")>dR)=d

This contradiction completes the proof.

O

Theorem [2.2|implies that R; = (for i > 2n, where n is the number of vertices
of G. Therefore amnesiac flooding always terminates. The corollary below gives
a loose bound on termination time (tighter ones follow later):

Corollary 2.2.1. Synchronous amnesiac flooding always terminates in fewer than
2n + 1 rounds.

3 Termination Time

We have previously seen that Amnesiac Flooding on any synchronous network
will visit every node at most twice and thus, terminate, in at most 2n + 1 rounds.
However, we can find much better termination times. This maybe a good time to
remind us of classic flooding and its termination time. The classic stateful flood-
ing algorithm maybe summarised as follows:

From a source s, send a message to all its neighbours. Every receiving node for-
wards the message to all its neighbours, or all neighbours having not just received
the message from. If the message is received again, ignore the message and do
not forward.

This algorithm will achieve broadcast with termination time in optimal time i.e.
in eccentricity(s) (plus potentially one additional ruound) time where s is the ini-
tiator of the message. Time optimality is easy to see since the farthest node cannot
receive the message before eccentricity(s) rounds.

3.1 Almost Trivial Termination on Bipartite Graphs

As it turns out, proving termination
and showing that this time matches the

optimal is almost trivial for bipartite ® ®
graphs. It is easy to see that amne-

siac flooding is a bit like doing BFS o ®
exploration and one can now think of O

this exploration in terms of a traver- o ()
sal tree (Figure [5). The exploration

happens level wise where each level

is explored simultaneously. However,

since the graph is bipartite, there are ®

no cross-edges and by the amnesiac ® 00
flooding property, a message cannot go o O O

back up to the previous level. Thus,

the messages can only go down to the

next level with that whole level getting Figure 5: Amnesiac Flooding in a bipar-
explored simultaneously. Thus, am- ftite graph starting from a node b.

nesiac flooding will terminate in the

number of levels, which is the same as eccentricity of the initiator node. Thus,
amnesiac flooding not only terminates on bipartite graphs, it does so in optimal
time. Note that the smallest eccentricity in a graph is known as the radius and
the largest is the diameter and diameter is never more than twice the radius. The
following Theorem follows:

Theorem 3.1. In a bipartite graph G, amnesiac flooding initiated from a node g
terminates in rounds = e(g), where e(gy) is the eccentricity of the vertex g, in G.

3.2 Termination on Non-Bipartite Graphs

The situation is a lot more complicated for non-bipartite graphs. Thinking in terms
of the traversal, there are now cross edges and since there’s no memory, messages
can easily traverse back to the parent level from an already traversed level. Hus-
sak and Trehan [7,9] present and prove the termination bounds (Theorem [3.2).
They do so by direct arguments about amnesiac flooding and by defining ec nodes
(equidistantly connected nodes). ec nodes are two neighbouring nodes equidis-
tant from an initiator node and they exist if and only if the graph is non-bipartite.
Turau [12] proves similar bounds by constructing a bipartite auxillary graph for
every non-bipartite graph (by connecting two copies of the original graph that
have had their cross edges removed).

Theorem 3.2. ([7|], Theorem 12) Let G be a non-bipartite graph with diameter
d and let gy € G be an initial node of eccentricity e. Then, amnesiac flooding
terminates in j rounds where jis in the range e < j < e +d + 1.

Combining Theorems and[3.2] and from their proofs, we get the following
powerful general theorem:

Theorem 3.3. Let G be a graph with diameter d and let gy € G be an initial
node of eccentricity e. Then, amnesiac flooding terminates in rounds = e(g),
where e(gy) is the eccentricity of the vertex gy in G, if and only if G is bipartite,
otherwise (if and only if the graph is non-bipartite), amnesiac flooding terminates
in j rounds where jis in the rangee < j<e+d + 1.

Given that eccentricity is upper bounded by the diameter of the graph, Corol-
lary [3.3.T]follows:

Corollary 3.3.1. Let G be a graph with diameter d. Amnesiac flooding initiated
Jfrom any initiator node on G terminates in at most d rounds if G is bipartite, and
in at most 2d + 1 rounds, if G is non-bipartite.

One can easily verify that the bounds in Theorem [3.3] are tight: AF in the
symmetric bipartite hypercube graph (Figure[l)) terminates from any initiator ver-
tex in diameter (equal to eccentricity) rounds, and in the symmetric non-bipartite
graphs Triangle (Figure [2) and Petersen graph (Figure [I)) in twice the diameter
((equal to eccentricity)) plus 1 rounds. However, when node eccentricity is less
than the diameter, on the bipartite line graph (Figure [2] with node b as initiator),
AF terminates in eccentricity (less than diameter) time. For non-bipartite graphs,
one can construct graphs and choose initiator nodes such that amnesiac flooding
can terminate in, for any chosen j, in the range e < j < e + d + 1. For example,
in Figure [6] AF terminates in only e(= 5) + 1 rounds when begun from node a

Figure 6: Amnesiac Flooding on graph G begun from node a terminates in e + 1
rounds, whereas from node b it terminates in e+d+ 1 rounds where ¢ = e(a) = e(b)
is the eccentricity of the nodes and d is the diameter of G.

but in e(= 5) + d(= 5) + 1 rounds when begun from node b. The tight nature of
the if and only if result of Theorem [3.3|raises the intriguing question of whether
there maybe stateless/semi-stateless algorithms that can be used for testing bi-
partiteness/diameter approximation using a run of amnesiac flooding. However,
the dependence on eccentricity (rather than diameter) suggests this maybe chal-
lenging.

3.3 Multiple Starters and Multiple Floodings

Though the results in [7] are stated for a single starter, it also states that these can
be extended to multiple starters (due to the nature of the proofs) and this is done in
the journal version of the paper [9] by an elegant adaptation and restatement of the
property of bipartiteness in the context of multiple starters. The proofs and results
then follow in a straightforward manner. Extending the definitions of ec nodes
and eccentricity to a set I of starters (from a singleton node), we proposed the
notion of I — Bipartiteness:

Definition 3.1. The graph (G, E) is I-bipartite iff (G, E) has no ec-nodes. Equiv-
alently, (G, E) is I-bipartite iff the quotient graph of (G, E), in which the nodes of
I are contracted to a single node, is bipartite.

This leads to a restatement of Theorem [3.3|as follows (Theorem [3.4).

Theorem 3.4. Let G(V, E) be a graph with diameter d and let I C V be a set of
initial nodes. Then, amnesiac flooding terminates in rounds = e(I) if and only if G
is bipartite, and otherwise in j rounds where jis in the range e(I) < j < e(I)+d+1,
where e(l) is the eccentricity of the set I (defined as e(I) = max{distance(l, g) :
g € V}) and d is the diameter of G.

This result is also tight, and a general condition for meeting the e(/) + 1 lower
bound on non-bipartite graphs is shown in [9].

Potentially, from a more practical consideration, the behaviour of amnesiac
flooding and other related floodings when there are multiple messages of interest
in the network, is of interest. This is more so if we are in the CONGES T model
where messages are limited to (poly)logarithmic size. Assuming each message is
of logarithmic size, one can easily execute a constant number of amnesiac flood-
ings in a parallel, stateless manner with all the nice properties. In general, there
could be different rules and floodings (distinct from amnesiac flooding) which
could be executed. Hussak and Trehan discuss some variants and their termina-
tion in [§]]. Maybe the latest results on uniqueness (Section [6)) could have some
bearing on that discussion.

4 Asynchronous Amnesiac Flooding

® /._e M k)
A Wal

(a) Round 1 (b) Round 2 (¢c) Round 3 (d) Round 4 (e) Round 5

Figure 7: Asynchronous AF over a Triangle with an adaptive scheduler. Both
node a and ¢ send M to each other in round 2. In round 3, a sends M to b but
the adversary makes ¢ hold the message for one round (shaded node). In the next
round, we have a round analogous to round 2 and so on.

1 1 2

O+050

Figure 8: Non-termination of AF under a fixed delay on a single edge. The num-
bers on the edges give the number of rounds required for delivery.

Assuming a completely asynchronous model with completely local indepen-
dent clocks and arbitrary delivery times, a question arises right off the bat: For a
node, when can one say that messages from two distinct neighbours have been re-
ceived simultaneously?. Note that this question is central to executing AF - since,
in AF, the node floods to the other neighbours. This and other considerations led

us to propose the Round Asynchronous model as one simplified model to posit
amnesiac flooding in [6,/7,9].

Definition 4.1. Round-Asynchronous Model. Computation proceeds in rounds
where each round consists of nodes receiving messages scheduled to be delivered
to it in that round, does local processing, and outputs (possibly different) mes-
sages to its neighbours. For every message, a scheduling adversary decides in
which future (but unknown to the nodes) round the message is delivered to its des-
tination. The adversary could be adaptive i.e. it can decide a delivery time for
every message, or fixed i.e. for every edge, it decides on a fixed delay for that
edge which does not change during the execution of the algorithm.

For the stronger adaptive model, Figure [/| shows an execution of AF under
an adversary strategy that leads to non-terminating broadcast. Remarkably, under
the fixed adversary, we found that a single fixed delay on a single edge can lead to
non-terminating broadcast as shown in Figure [§]

S Dynamism and Fault-Sensitivity

/ \ /

O O O—=00 O O O

Figure 9: Amnesiac Flooding not terminating on insertion of an edge

In the previous section (Section []), we saw (in the asynchronous setting), the
delay of a single time step on a single edge can lead to non-termination. In a simi-
lar flavour, in [3H5]], Austin, Gadouleau, Mertzios, and Trehan show that dropping
even a single message on a single edge can lead to non-termination in certain
cases. This work tries to delve deeper into the structural properties of amnesiac
flooding in a formal manner and discovers the sensitivity of amnesiac flooding.
Besides the just mentioned single message failure non-termination, the paper also
shows potential non-termination in case of a single uni-directional link failure,
or a weak byzantine failure (as defined in the paper). Combined with the easy
observation that on the family of directed graphs, a uni-directional ring is an obvi-
ous topology for non-termination, one can see that amnesiac flooding can be very
sensitive. This may not be the full story, however, since one can conjecture that
another or a larger number of faults may actually restore terminating broadcast.

Earlier versions [8]] have also studied dynamism in the form of node and edge
deletion and insertion and conclude that Amnesiac Flooding is stable i.e. contin-
ues to do terminating broadcast in case of node and edge deletions (potentially
requiring connectivity for broadcast) but cannot guarantee the same in case of
edge or node insertions (Figure [9).

6 Amnesiac Flooding is Unique

Uniqueness may be a lightly used English word but Austin, Gadouleau, Mertzios,
and Trehan [3-5]] show that amnesiac flooding is unique in a formal technical
sense: Amnesiac Flooding is the only algorithm that can solve terminating broad-
cast under certain reasonable conditions. Moreover, relaxing any of these con-
ditions allows more algorithms to solve the problem. We believe that even this
statement is unique - at least, we are not aware of results in the field of Algo-
rithms design that can state that a single (or even a finite number of algorithms)
can solve a particular problem. In fact, one would need to devise a reasonable
definition of uniqueness to make such a statement - we do have an easier way to
do so in our setting as will be seen shortly.
The formal statement is as follows (from [3-5]):

Theorem 6.1 (Uniqueness of Amnesiac Flooding). Any terminating broadcast
algorithm possessing all of Strict Statelessness, Obliviousness, Determinism and
Unit Bandwidth behaves identically to Amnesiac Flooding on all graphs under all
valid labellings for all source nodes.

Elaborating, the four conditions are as follows:

1. Strict Statelessness: Nodes maintain no information other than their port
labellings between rounds. This includes whether or not they were in the
initiator set.

2. Obliviousness: Routing decisions may not depend on the contents of re-
ceived messages.

3. Determinism: All decisions made by a node must be deterministic.

4. Unit Bandwidth: Each node may send at most one message per edge per
round.

Violation of even one of the above conditions allows us to propose other termi-
nating broadcast algorithms. For example, a randomised algorithm which chooses
between amnesiac flooding and flooding to every neighbour at every occasion of
flooding, will eventually achieve terminating broadcast.

In a general setting, potentially one of the first hurdles one can imagine is
how to rule out trivial extensions of any algorithm such as delaying execution of
a command by a single wait statement, for example. Fortunately, in our setting of
true statelessness, this does not seem possible, because delaying execution would
necessitate use of memory and state to remember the command that is delayed.
Beyond that, proving the result was technically challenging and we hope, this is a
result and a direction which the research community will find interesting.

7 Conclusions

Amnesiac Flooding is a stateless version of flooding which was introduced in
2019. The synchronous version of this was shown to terminate in optimal number
of rounds in bipartite graphs and in at most twice longer time in non-bipartite
graphs. In fact, it was subsequently shown to terminate from any number of
starters (simultaneous or non-simultaneous) with the termination time partition-
ing the graphs on the basis of an extension of bipartiteness called I-bipartiteness.
A number of other interesting results, variants and related questions have been
proposed in recent times including broader results on memory requirements for
broadcast algorithms [10]. A most recent and exciting result, in our opinion, is
that amnesiac flooding is the only stateless deterministic oblivious (to message
content) algorithm that can achieve terminating broadcast. Amnesiac flooding is
thus, technically, a unique algorithm. This poses the question of quantification of
algorithmic solutions to particular problems.

References

[1] Amnesiac flooding, October 2025. https://en.wikipedia.org/wiki/Amnesiac_flooding.

[2] James Aspnes. Flooding, February 2019.
http://www.cs.yale.edu/homes/aspnes/pinewiki/Flooding.html.

[3] Henry Austin, Maximilien Gadouleau, George B. Mertzios, and Amitabh Trehan.
Amnesiac Flooding: Easy to Break, Hard to Escape. In Dariusz R. Kowalski, ed-
itor, 39th International Symposium on Distributed Computing (DISC 2025), vol-
ume 356 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1—
10:23, Dagstuhl, Germany, 2025. Schloss Dagstuhl — Leibniz-Zentrum fiir Infor-
matik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.DISC.2025.10,doi:10.4230/LIPIcs.DISC.2025.10.

[4] Henry Austin, Maximilien Gadouleau, George B. Mertzios, and Amitabh Trehan.
Amnesiac flooding: Easy to break, hard to escape. CoRR, abs/2502.06001, 2025.
URL: https://doi.org/10.48550/arXiv.2502.06001, arXiv:2502.06001,
doi:10.48550/ARXIV.2502.06001.

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.10
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.10
https://doi.org/10.4230/LIPIcs.DISC.2025.10
https://doi.org/10.48550/arXiv.2502.06001
http://arxiv.org/abs/2502.06001
https://doi.org/10.48550/ARXIV.2502.06001

(5]

[6]

[7]

(8]

[9]

Henry Austin, Maximilien Gadouleau, George B. Mertzios, and Amitabh Tre-
han. Brief announcement: Amnesiac flooding: Easy to break, difficult to es-
cape. In Alkida Balliu and Fabian Kuhn, editors, Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, PODC 2025, Hotel Las Brisas Hu-
atulco, Huatulco, Mexico, June 16-20, 2025, pages 541-544. ACM, 2025. doi:
10.1145/3732772.3733523|

Walter Hussak and Amitabh Trehan. On termination of a flooding process. In Peter
Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 -
August 2, 2019., pages 153-155. ACM, 2019. doi:160.1145/3293611.3331586.

Walter Hussak and Amitabh Trehan. On the termination of flooding. In Christophe
Paul and Markus Bliser, editors, 37th International Symposium on Theoretical As-
pects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France,
volume 154 of LIPIcs, pages 17:1-17:13. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.17.

Walter Hussak and Amitabh Trehan. Terminating cases of flooding. CoRR,
abs/2009.05776, 2020. URL: https://arxiv.org/abs/2009.05776, arXiv:
2009.05776.

Walter Hussak and Amitabh Trehan. Termination of amnesiac flooding. Dis-
tributed Comput., 36(2):193-207, 2023. URL: https://doi.org/10.1007/
s00446-023-00448-y,/doi:10.1007/S00446-023-00448-Y.

Garrett Parzych and Joshua J. Daymude. Memory Lower Bounds and Impos-
sibility Results for Anonymous Dynamic Broadcast. In Dan Alistarh, editor,
38th International Symposium on Distributed Computing (DISC 2024), volume
319 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1—
35:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Infor-
matik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.DISC.2024.35,doi:10.4230/LIPIcs.DISC.2024.35.

David Peleg. Time-optimal leader election in general networks. J. Parallel Distrib.
Comput., 8(1):96-99, January 1990. doi:10.1016/0743-7315(90)90074-Y.

Volker Turau. Amnesiac flooding: synchronous stateless information dissemina-
tion. In SOFSEM 2021: Theory and Practice of Computer Science: 47th Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021, Proceedings 47, pages
59-73. Springer, 2021.

https://doi.org/10.1145/3732772.3733523
https://doi.org/10.1145/3732772.3733523
https://doi.org/10.1145/3293611.3331586
https://doi.org/10.4230/LIPIcs.STACS.2020.17
https://arxiv.org/abs/2009.05776
http://arxiv.org/abs/2009.05776
http://arxiv.org/abs/2009.05776
https://doi.org/10.1007/s00446-023-00448-y
https://doi.org/10.1007/s00446-023-00448-y
https://doi.org/10.1007/S00446-023-00448-Y
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.35
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.35
https://doi.org/10.4230/LIPIcs.DISC.2024.35
https://doi.org/10.1016/0743-7315(90)90074-Y

	Introduction
	Amnesiac Flooding
	Some Illustrative Examples

	Termination
	The First Proof

	Termination Time
	Almost Trivial Termination on Bipartite Graphs
	Termination on Non-Bipartite Graphs
	Multiple Starters and Multiple Floodings

	Asynchronous Amnesiac Flooding
	Dynamism and Fault-Sensitivity
	Amnesiac Flooding is Unique
	Conclusions

