
 !""#$%& '($)# *+,-. &' /012 334 /005//62 78$'9#: ;0//

©8
*!:'3#<& +=='8%<$%'& (': ,)#':#$%8<" -'>3!$#: .8%#&8#

 !"#$% &' ()* !" "# $% $&'()*%

 !!

A  B  


∗

Uri Abraham, Ben-Gurion University, Beer-Sheva, Israel

Abstract

We compare two proofs of the mutual-exclusion property of the well

known critical section algorithm of Peterson: an assertional proof and a be-

havioral one. The accepted view is that behavioral proofs are informal and

are, for some intrinsic reason, error prone. We try to present a different view

and to outline a framework within which the behavioral approach can be for-

malized in a way that keeps the intuitive content of the behavioral reasoning.

1 Introduction

Behavioral reasoning is useful because it gives insight, but it is prone to

errors.

A. U. Shankar, An Introduction to Assertional Reasoning, 1993.

Whereas the invariant–assertional method is well defined, and its formal de-

velopment is a well established field of pure and applied information science,

the term behavioral reasoning (or operational reasoning) is only loosely used

to denote a certain pre-formal activity which belongs, some would say, more to

psychology than to computer science. Without denying the proven industrial and

theoretical value of the assertional reasoning, I argue that this strong and success-

ful scientific activity has neglected the need to develop the behavioral approach,

not as a substitute to the assertional method, but as a way to explain algorithmic

ideas and to develop error free distributed algorithms (which may finally be ana-

lyzed with assertional methods). My point is that, since there is ample evidence

that behavioral reasoning is extensively employed (for example in classes, by the

researchers who try to understand or develop a distributed algorithm, and even in

publications), it is not enough to send these users to study Latin, but we must also

∗After a lecture given at Taras Shevchenko National University, Kyiv, in July 2011

 !" #$%%"&'()* &!" +, -.

 !

P repeats forever

1P RemainderP;

2P interestedP := true;

3P turn := Q;

4P await:

¬interestedQ ∨ turn = P;

5P critical-section;

6P interestedP := f alse;

Q repeats forever

1Q RemainderQ;

2Q interestedQ := true;

3Q turn := P;

4Q await :

¬interestedP ∨ turn = Q;

5Q critical-section;

6Q interestedQ := f alse;

Figure 1: Peterson’s mutual exclusion algorithm with an await statement. The

initial value of interestedP and interestedQ is f alse.

show them ways to adroitly use their own language. We propose in this paper

some steps in this direction.

Following Shankar in his paper cited above, we take the well-known critical

section algorithm of Peterson [5] and prove in both methods, the assertional and

the behavioral, that it satisfies the mutual-exclusion property. There is no need

to dwell too long on the assertional approach, since the excellent introduction of

Shankar [6] is still recommended and since this is the approach that is universally

taken in textbooks and lecture notes, but something has to be said on which we

can base our comparison of the methods, and so the following section is a brief

description of the assertional method as it applies to Peterson’s algorithm.

2 Peterson’s algorithm in the assertional approach

Peterson’s two process critical section algorithm [5] is presented in Figure 1. The

two processes are P and Q and they communicate by means of three serial reg-

isters. interestedP and interestedQ are single writer boolean registers that are

written by P and Q respectively and can be read by both processes, and turn is a

common register on which the two processes may write, and its value are the two

tokens P and Q. The initial value of interestedP and interestedQ is false, and the

initial value of turn is of no importance.

Peterson’s mutual exclusion algorithm is composed of two sequential proto-

cols, one for process P and the other for process Q (which is obtained in a sym-

 !"#$% &' ()* !" "# $% $&'()*%

 !"

metric way by changing the names of P and Q). Each process executes its protocol

whenever it wants to access its critical section, and so we can think of the activ-

ity of P as an alternation of RemainderP activity (which may be non-terminating)

and protocol execution, which consists of execution of lines 1P up-to 6P. The

protocol that P has to execute in order to enter its critical section is quite short.

It first writes the value true in its register interestedP, then it writes the value

Q in register turn, and then it waits for the system to announce that condition

¬interestedQ ∨ turn = P holds. If and when this condition holds, process P

can enter its critical section (line 5P). For the liveness property we have to as-

sume that it stays in its critical section only a limited amount of time, and on exit

from the critical section P resets its register interestedP to false and returns to its

Remainder activities.

The assertional method depends on the notion of global states. We emphasize

this point since the behavioral method needs only local states of the participating

processes as we shall see. Generally speaking, a global state is a function from

the set of state variables which gives to every variable a value in its type.

• The state variables of Peterson’s algorithm are: PCP, PCQ, interestedP,

interestedQ, turn. The type of PCP (its set of possible values) is the set

of line numbers of the protocol of P: {1P, . . . , 6P}, and the type of PCQ is

the set {1Q, . . . , 6Q}. (PCP and PCQ are the program-counters of P and Q

respectively.) The type of interestedP and interestedQ is the set {true, false}

of boolean values, and the type of turn is the set {P,Q}.

• A state (of Peterson’s algorithm) is a function S defined over the state vari-

ables which respects the type of each variable.

• An initial state is a state S so that S (PCP) = 1P, S (PCQ) = 1Q, and

S (interestedP) = S (interestedQ) = false.

A state is also a structure. A structure S has a satisfaction relation: S |= α

says that statement α holds in S .

For example, ¬(PCP = 5P ∧ PCQ = 5Q) is the “Mutual Exclusion” statement

which is denoted ME. It says intuitively that it is not the case that both P and Q

are in their critical sections at the same time. S |= ¬(PCP = 5P ∧ PCQ = 5Q) just

means that S (PCP) , 5P ∨ S (PCQ) , 5Q.

States are descriptions of the system that are frozen in time. Change is de-

scribed by steps. A step (also called a transition) is a pair of states (S ,T) that

represents an atomic action (a move or event) by which state S changes to state

T . In our example, the step represent executions of the program instructions by

process P or Q. For lines numbers i and j (in the protocol of P or of Q), an (i, j)

 !" #$%%"&'()* &!" +, -.

 !"

step is a pair of states (S ,T) which represents an execution of the instruction at

line i which moves the control from line i of the code to line j.

For example a (4P, 5P) step is a pair of states (S ,T) so that

• S |= PCP = 4P ∧ (¬interestedQ ∨ turn = P)

• T |= PCP = 5P,

• for every state variable v other than PCP, S (v) = T (v).

The last definition that the assertional method requires is that of execution or

history. A history is a sequence H of states S 0, S 1, · · · (which we take here to be

infinite) so that

• S 0 is an initial state,

• for every index i, (S i, S i+1) is a step.

A history is a description of a possible execution of the algorithm. In a history

H the steps of the two processes interleave. To prove the mutual-exclusion prop-

erty is to prove that in any history H of Peterson’s algorithm, each state S i in the

history satisfy the mutual-exclusion sentence ME.

In general, the correctness of a distributed algorithm is expressed by some

property ϕ of sequences of states. (Some sequences may have this property and

some perhaps have not.) Assuming that ϕ reflects what we think is a good behavior

of the system, to prove that a distributed algorithm is correct is to prove that all

of its histories have property ϕ. Mathematical formality requires that properties

are expressed in some well-formed language and that the satisfaction relation “H

satisfies ϕ” (where H is a history execution and ϕ a property) is well defined. For

the assertional method, this well-formed language is a temporal logic language,

but for our purpose (of describing two methods) there is no need to enter into any

of the details of these languages and we refer the reader to [6] for example. We

note however that the temporal logic languages do not quantify over the events

(step occurrences) that the history generates.

The language that the states defined in our example support is a simple propo-

sitional language, but states can be more complex structures which interpret quan-

tification languages. These quantifiers, however, only quantify over the members

of the state, and they do not quantify over the steps. As we shall see, this is a

marked difference between the assertional method and the behavioral, and a main

reason for the attractiveness of the behavioral approach is that quantification over

the events is possible.

We finally describe the invariant-inductive method. Given a history H =

S 0, S 1, . . . we want to prove that some state statement α holds for every S i. Like

 !"#$% &' ()* !" "# $% $&'()*%

 !"

a proof by induction on i, it suffices to prove that S 0 |= α, and that for every i, if

S i |= α then S i+1 |= α.

The assertional methods consists in proving that α is an invariant, which

means that:

• If S is any initial state then S |= α.

• If (S ,T) is any transition step and if S |= α then T |= α as well.

Let’s exemplify this by considering the following invariant assertion of Peter-

son’s Algorithm AP ∧ AQ ∧ BP ∧ BQ ∧C where:

AP : interestedP ≡ PCP = 3P, 4P, 5P, 6P.

AQ : interestedQ ≡ PCQ = 3Q, 4Q, 5Q, 6Q.

BP : PCP = 5P → ¬interestedQ ∨ PCQ = 3Q ∨ turn = P.

BQ : PCQ = 5Q → ¬interestedP ∨ PCP = 3P ∨ turn = Q.

C : The constants are all different (the line numbers and the token “P” and “Q”).

We used here an abbreviation: X = v1, . . . , vn instead of X = v1∨X = v2∨· · · X =

vn.

What are we supposed to do with the assertions AP, AQ, BP, BQ,C?

• To prove that their conjunction imply the mutual-exclusion statement ME.

• To prove that they hold in every initial state.

• To consider every (i, j) step (S ,T) in turn and to prove that if S satisfies all

of these assertions, then T satisfies them all as well.

The algorithm of Peterson that we consider and its invariants are so simple that

we can leave this mission to the interested reader and continue with a description

of the behavioral approach.

 !" #$%%"&'()* &!" +, -.

 !"

3 The Behavioral approach, an introduction

Operational reasoning has value. Again, being very subjective, we have

found that the flash of insight that sparks the creation of an algorithm is often

based on operational, and even anthropomorphic, reasoning. Operational

reasoning by itself, however, has gotten us into trouble often enough that we

are afraid of relying on it exclusively. Therefore we reason formally about

properties of a program, using predicates about all states that may occur

during execution of the program.

K. M. Chandy and J. Misra [4] (page xi) (Operational in this quotation is what

we call Behavioral).

As we saw, the main notions that the assertional method studies are the states,

steps, and histories. The behavioral approach, on the other hand, concentrates

on the events, their temporal precedence relation, and on other predicates and

functions over the events. Quantification over the events can be freely used in the

behavioral approach. We shall investigate here again the critical section algorithm

of Peterson, but now we prefer to replace the await statement with an explicit

“busy reading” while loop. There is no deep reason for this replacement, but after

some thought we decided that this is slightly more suitable for our purpose. The

“busy reading” Peterson’s algorithm is in Figure 2.

Before line 4P is executed local variables a and b are assigned values that

make a ∧ (b , P) true. So the loop 4P (its body) is executed at least once. Each

execution is a read of either register interestedQ or turn. (For the liveness property

it is important that no register is neglected, but for the mutual exclusion property

it is not.)

In this section we describe a semi-formal correctness proof for the algorithm

of Peterson, and in the following section we describe a possible direction in which

formalization may be obtained. Although its main objects of interest are the

events, the behavioral method still needs states and transitions in order to con-

vey the semantics of its protocols. But now only local states, local steps, and

local histories of each process are needed as we shall see. Before we define the

local semantics of the processes and the way in which they can be combined to

global system executions, we want to present the behavioral correctness proof in

its more intuitive reasoning lines. An advantage of the behavioral reasoning is

that, just like any mathematical proof, it can be presented at an informal level and

then supplied with more details and be turned into a formal proof without losing

the guidelines of the informal (or semi-formal) reasoning.

The behavioral approach differs from the assertional one already in the for-

mulation of what is the aim of the proof. Whereas the assertional proof wants to

 !"#$% &' ()* !" "# $% $&'()*%

 !"

P repeats forever

1P RemainderP;

2P interestedP := true;

3P turn := Q;

a := true; b := Q;

4P while: a ∧ (b , P) do

4P(1) a := interestedQ;

or

4P(2) b := turn;

5P critical-section;

6P interestedP := f alse;

Q repeats forever

1Q RemainderQ;

2Q interestedQ := true;

3Q turn := P;

a := true; b := P;

4Q while: a ∧ (b , Q) do

4Q(1) a := interestedP;

or

4Q(2) b := turn;

5Q critical-section;

6Q interestedQ := f alse;

Figure 2: The critical section algorithm of Peterson with an explicit while loop

instead of the await statement. Initially interestedP and interestedQ are false.

show that no state violates the mutual exclusion property (in any possible history)

the behavioral proof is about the events that an arbitrary execution generates, and

it uses the precedence relation in its formulation. The mutual-exclusion property

ME is now stated as follows:

If X and Y are critical-section events, then X < Y or Y < X.

More formally

∀X,Y (CS (X) ∧CS (Y)→ X < Y ∨ Y < X).

We see here how events are quantified and how a predicate, CS , is applied to event

variables X and Y .

Our plan for the behavioral proof is as follows. We shall first define some

simple “basic properties” that executions of the algorithm possess, and then we

will prove that the mutual exclusion property ME follows from these properties.

The description of these basic properties and the argument that they hold in ev-

ery execution is done at a very informal level. But the properties themselves are

written (or can easily be written) in a formal first order language that has a clear

and definite meaning. The proof that these properties imply the mutual exclusion

property is done in a completely formal (or formalizable) way. Finally, in Section

 !" #$%%"&'()* &!" +, -.

 !"

4 we will show how these basic properties can be formally proved to hold in every

execution of the algorithm.

Consider an execution of Peterson’s algorithm of Figure 2, and let c be some

critical-section event in this execution, for example by process P. Then there has

to be a successfully terminating execution of the while loop of line 4P that enabled

the entry of P into its critical-section. So there has to be a successful read, which

we denote sr(c), so that one of the following two possibilities holds.

1. sr(c) is a read of register interestedQ with value false, or

2. sr(c) is a read of register turn with value P.

Continuing our inspection of the protocol of process P, we see that, before

this successful execution of the while loop, process P had to write in register turn

the value P. We denote this write event that corresponds to line 3P with wturn(c).

Then, before wturn(c) we have a write in register interestedP of the value true (an

execution of line 2P). We let winterested(c) denote this write event. The events that

we have defined are ordered (in time) as follows.

winterested(c) < wturn(c) < sr(c) < c. (1)

Of course, these definitions and properties apply to cs events by process Q as well

(changing the role of P and Q).

We shall prove the following theorem rather informally, and when we find

that our argument requires additional assumptions we shall write them down [in

square brackets] in order to finally gather a complete list of all assumptions that

are needed for the theorem to work.

Theorem 3.1. Let c1 and c2 be two cs events by the two processes. If wturn(c1) <

wturn(c2) then c1 < c2.

Before proving this theorem, we note that it implies the mutual exclusion prop-

erty. Indeed, if c1 and c2 are by the same process P or Q then the conclusion fol-

lows immediately from the assumption that each of the processes is serial. [Add

an assumption on the seriality of every process.] If c1 and c2 are by different

processes, then we consider their corresponding write events w1 = wturn(c1) and

w2 = wturn(c2). [Add an assumption by which we can conclude that w1 , w2.] So

w1 < w2 or w2 < w1. [Add an assumption that read and write events in the same

register are linearly ordered.] If w1 < w2 then the theorem implies that c1 < c2,

and otherwise w2 < w1 implies that c2 < c1. [Do not forget to write down the

properties of the < relation.]

 !"#$% &' ()* !" "# $% $&'()*%

 !"

So we now turn to the proof of the theorem. Assume without loss of generality

that c1 is by process P and c2 by Q. Apply (1) to get that winterested(c1) < wturn(c1)

and that wturn(c2) < sr(c2) < c2. Hence, as we assume that wturn(c1) < wturn(c2),

winterested(c1) < wturn(c1) < wturn(c2) < sr(c2) < c2.

Consider the two possibilities for sr(c2), a read of turn of value Q, and a read of

interestedP of value false, and we shall obtain in both cases that c1 < sr(c2), and

hence that c1 < c2 holds.

1. Assume that sr(c2) is a read of turn of the value Q. Since w2 = wturn(c2) is

a write in turn of value P, and as w2 < sr(c2), the fact that sr(c2) is a read

of value Q [which is different from P] implies that there has to be some

write w′ in turn of value Q such that w < w′ < sr(c2). [This requires some

assumption on the behavior of the read/write events.] But any such write

event w′ is by process P [because only that process writes this value], and

we know that there is no write in register turn by process P between wturn(c1)

and c1 [we need this property]. So c1 < w′ follows from the seriality of

process P, and thus c1 < w′ < sr(c2) implies c1 < sr(c2) as required.

2. Assume next that sr(c2) is a read of interestedP of value false. Since

v = interestedP(c1) is a write on interestedP of value true, and as v <

wturn(c1) < wturn(c2) < sr(c2) implies that v < sr(c2), the fact that sr(c2) is a

read of value false indicates the necessity of some write v′ of value false in

register interestedP so that v < v′ < sr(c2). But there is no write in register

interestedP between winterested(c1) and c1, and hence c1 < v′ which implies

again that c1 < sr(c2).

�

We are now ready to formulate a detailed and complete list of properties from

which the theorem that we outlined above follows. We need first to define the

language in which these properties are written. The language LBP (BP is for Basic

Properties) is a two-sorted language with two sorts: Event and Atemporal. (The

events will be the read/write and cs events, and the atemporal members will be the

values

{true, false,P,Q, turn, interestedP, interestedQ,⊥}

(which are are all different). The role of ⊥ is to be an “undefined” value for partial

functions.) We will have the following relations and functions.

1. < is a binary relation on the Event type. P, Q, read, write, and cs are unary

predicates defined on the Event type.

2. Val and register are functions from the Event type to the atemporal values.

 !" #$%%"&'()* &!" +, -.

 !"

3. sr, wturn, winterested are functions from the Event type into the Event type.

The following examples illustrate how the language LBP can be used. We

reserve variables x, y, a, b, c etc. to vary over the events. For example ∀a((Q(a)∨

P(a)) ∧ ¬(Q(a) ∧ P(a))) says that every event is either in Q or in P but not in

both processes. The function register(x) gives the register (name) on which x

operates. For example, ∀x(register(x) = turn → Val(x) = P ∨ Val(x) = Q) says

that the value of any event on register turn is either P or Q. Here is how we say

in LBP that for every cs event c by P, wturn(c) is a write on turn of value true.

∀c(cs(c) ∧ P(c) → write(wturn(c)) ∧ Val(wturn(c)) = true ∧ P(wturn(c))). This

sentence in LBP also explains why we prefer mathematical English over formal

first-order sentences when writing for the human eyes.

The list of “basic properties” (stated in this language LBP) is in Figure 3. It

is divided into four parts: the general properties, the register properties, the P

properties, and the Q properties.

We ask the reader to reprove Theorem 3.1 and to check all details in order to

make sure that all assumptions that are needed for the proof are stated in this list

of Basic Properties.

4 A formal framework based on local states

In the previous section we took the basic properties of Figure 3 as self-evident and

showed that they imply the mutual exclusion property (Theorem 3.1). How can

we formally prove that executions of the Peterson algorithm satisfy these basic

properties? For this aim, we must be able to view the executions of the algo-

rithm as first order structures, that is structures for which the truth of first order

formulas can be evaluated (we call such structures Tarskian). Traditional and

well-established methods that view histories of global states as models of some

temporal logic language will not work because the statements of the basic proper-

ties involve quantification over events and the introduction of functions from the

events into the events (such as the sr(c) function). Our aim here is to explicate the

meaning of the following theorem and to outline a proof.

Theorem 4.1. Every execution of the algorithm of Peterson satisfies the properties

of Figure 3.

There is more than one way to define the term “algorithm execution” that

appears in the theorem and to prove it. It is possible to take a history of global

states and to expand it into a Tarskian structure by adding the step occurrences

as the events of the structure. The resulting structure, if presented as a Tarskian

structure, will satisfy these properties. But for reasons that will be discussed in

 !"#$% &' ()* !" "# $% $&'()*%

 !

general properties: The Event type is partitioned into P and Q events (pred-

icates P and Q are called “processes”). Relation < is an irreflexive and

transitive relation on Event. The restriction of < to each of the two

processes is a linear ordering.

register properties: The function register gives for every read and write

event e a register name register(e) ∈ {turn, interestedP, interestedQ}.

If write(e) (read(e)) and register(e) = R (one of the three registers) we

say that e is a write event (read event) in register R. We say that Val(e)

is its value.

For every register R, the set of read/write events is linearly ordered by

<.

Every register has an initial write event that precedes any non-initial

events. The value of the initial write events on interestedP and

interestedQ is false.

If r is a read event of register R, and if w < r is a write event and

Val(r) , Val(w) then there is a write in R event w′ so that w < w′ < r.

P properties: For every cs event c by process P, winterested(c) is a write event

by P in register interestedP of the value true. wturn(c) is a write event

by P in register turn of the value Q. sr(c) is a read event by program P.

winterested(c) < wturn(c) < sr(c) < c. (2)

There are two cases.

1. register(sr(c)) = interestedQ and Val(sr(c)) = false.

2. register(sr(c)) = turn and Val(sr(c)) = P.

If w is any write event by process P such that winterested(c) < w < c then

w = wturn(c).

Any write by process P is either in register turn or in interestedP. Any

write in turn by process P is of value Q.

Q properties: These are obtained as above by interchanging P and Q.

Figure 3: The Basic Properties, stated in the LBP language.

 !" #$%%"&'()* &!" +, -.

Section 5 we prefer to consider local histories rather than histories of global states.

The main idea that leads the proof of this theorem, as we see it, is quite simple, but

its fuller development will take more space then a short article allows. I believe

that if I describe this idea in general lines, then it would be easier for the reader

to follow the (partial) details that follow, and in fact some readers may prefer to

develop their own versions of this proof.

Recall that the list of Basic Properties of Figure 3 is divided into general prop-

erties, register properties, P properties, and Q properties. The main idea in our

proof is a separation of concerns: The register properties are not connected to any

algorithm and they stand independently as an assumption that we make on the reg-

isters. The P properties of that list depend only on the code of the P protocol. We

could deduce them from the code of P even if we do not know that there is another

process named Q that executes concurrently. Hence the list of P properties can be

deduced by considering only local states and steps that refer to local variables of

P and their values. In a similar vein the Q properties depend only on the Q pro-

tocol. Now suppose that we have a structure (a system execution) in which both

events by process P and events by process Q appear, and the partial precedence

relation on these events is not necessarily linear. Two projections can be defined,

one which takes only the events of P and forms a substructure that consists only

of these events; let’s call it MP. And another projection yields the structure MQ

obtained by collecting only events of Q. There are basically three requirements on

M: 1. that the read/write events satisfy the specification of serial registers. This

is an assumption that we make; 2. that the structure MP satisfies the P properties

of Figure 3; and 3. that the MQ structure satisfies the Q properties. The fact that

MP and MQ satisfy these properties is a consequence of the assumption that these

structures are derived from local histories of processes P and Q respectively.

Now that we understand the role of local histories in our proof, we shall de-

fine in detail the local variables, states, steps, and histories of process P. The

corresponding definitions for Q can be defined in the same manner. The local

variables of P are VP = {PCP, a, b} (we should write aP and bP to distinguish

these local variables from the corresponding Q variables, but the context makes

it clear that we refer here to local P variables). The type of PCP (its set of pos-

sible values) is the set of control positions which we take to be the line numbers

{1P, . . . , 6P} (which include 4P(1) and 4P(2)). The type of a is the set of boolean

values {true, false} and the type of b is {P,Q}. Note that the registers are not local

variables. In general, the communication devices (queues and registers for exam-

ple), which are variables of global states, are not variables of local states in the

behavioral approach.

A local state of P is a function S that is defined over VP and gives to every

variable a value in its type. A state is also viewed as a structure.

An initial local state for P is one in which the value of PCP is 1P.

 !"#$% &' ()* !" "# $% $&'()*%

 !

Local steps of P are pairs of local states (S ,T) that describe an execution of

an instruction in the code of P. We have the following local P steps. (1P, 1P),

(1P, 2P), (2P, 3P), (3P, 4P), (4, 4), (4, 5), (5, 6), (6, 1). With every local step we may

attach some predicate and some function values. We give a few examples.

A (2P, 3P) step is a write in register interestedP of the value true, this means

that the write predicate is attached to this step and its value is true, and the register

function which tells us in which register this step acts has the value interestedP.

However, this step does not record the value of the write in any register variable,

simply because registers are not local state variables. Formally, a (2P, 3P) step is a

pair of local P states (S ,T) so that S (PCP) = 2P, T (PCP) = 3P and for any other

local P variable v S (v) = T (v).

A (3P, 4P) step is a pair of P states (S ,T) so that S (PCP) = 3P and T (PCP) =

4P, T (a) = true, and T (b) = Q. We characterize this step as a write in register

turn of the value Q. But again, unlike the case of global steps in the assertional

method, this write value is not recorded in any variable.

A (4P, 4P(1)) step is a pair of local P states so that S |= a∧ (b , P), S (PCP) =

4P, T (PCP) = 4P(1), and no other variable changes. (The role of this step is to

indicate that register interestedQ is going to be read next.)

A (4P(1), 4P) step is a pair of local P states (S ,T) with S (PCP) = 4P(1),

T (PCP) = 4P and so that no variable except perhaps a may change its value.

This step is predicated as a read step of register interestedQ and it value is T (a)

which may be true or false.

A (4P, 5P) step is a pair of local P states (S ,T) with S (PCP) = 4P, T (PCP) =

5P and so that S |= ¬(a ∧ (b , P)). No other variable changes its value. We say

that this step is a cs entry step.

A (5P, 6P) step is a pair of local P states (S ,T) with S (PCP) = 5P and T (PCP) =

6P, and no other change. This is a cs step. Note that we do no have (5P, 5P) steps.

The fact that the cs step is a single transition does not indicate that this is an

instantaneous event.

A local history of P is a sequence of local states of P, H = (S 0, S 1, . . .) (which

we assume to be infinite), so that S 0 is an initial P state and for every i the pair

(S i, S i+1) is a local P step. A local history is not a Tarskian structure, but it can

easily be turned into one as we show next.

Given a local P history H, its “history structure”, M = MH, can be obtained,

roughly speaking, by taking the step occurrences as its sort of events and any other

feature of H that is not an event is taken into the atemporal sort of M. The idea

is that all the information that we have about H is transformed into M. The set of

states and their variables, as well as the functional relation that gives to any state

and variable the value of the variable in that state are all incorporated into M.

In order to define M in detail we want first to define the language LHP that

M interprets (which speaks about the States and histories of P) and we also have

 !" #$%%"&'()* &!" +, -.

 !

the corresponding LHQ language for history structures of process Q). LHP extends

the language LBP of basic properties. LHP is a two-sorted language with Event

and Atemporal sorts, and the Atemporal sort is further divided into the following

subsorts: Variables, Variable–values, and States. The variables are V = {PCP, a, b}

and the Variable–values are the types of the variables. The type of PCP are the

line numbers {1P, . . . , 6P}, the type of a is {true, false} and the type of b is {P,Q}.

LHP has the following predicates and functions.

1. at : States × V → Variable–values. (The role of this function, at, is to give

for every state S and variable v the value at(S , v) of v at state S .)

2. pre, post : Event → States. (The role of these functions is to give for every

event e the state pre(e) just before action e and the state post(e) which is

the result of e.)

3. All predicates and functions of the LBP language are also in LHP.

Suppose that H is a local P history as defined above. The history structure

M = MH that we define now is an interpretation of the language LHP. We define

M as a two-sorted structure with universe that consists of events and atemporal

sorts defined as follows:

1. The set of natural numbers ω is the sort of events of M. (We think of i as

the event that caused the transition (S i, S i+1).

2. The set of local states of P forms the States sort of M (an abstract set devoid

of any internal structure).

3. The set V of local P variables is also a sub-sort of the atemporal members

of M.

4. The set of state variable values is {1P, . . . , 6P,P,Q, true, false}.

The structure M interprets the LHP predicates and functions as follows.

1. < is the natural ordering on the set of events ω (a transitive and irreflexive

relation).

2. The function at : States × VP → Variable–values evaluates the states. For

every “state” S in M, and “variable” v in VP, at(S , v) is the value of S at v

(what would usually be written as S (v)). (Why “state” and “variable” are

in quotation marks? Because all members of a structure are devoid of any

internal composition, they are plain “points”. So S is not really a state,

it is not a function; only be means of the at function we can view it as a

representation of a state.)

 !"#$% &' ()* !" "# $% $&'()*%

 !

3. Every event i ∈ ω is associated with two states pre(i) and post(i). Since M

is the structure obtained from the given history H, pre(i) = S i and post(i) =

S i+1. Intuitively, pre(i) is the state that event i changes (if there is a change)

to S i+1.

4. Predicates read, write, cs, and functions Register and Val are defined on

the Event sort. If (S m, S m+1) is a (i, j) step, then the predicates and function

values that were associated to this step apply to event m. We give only some

examples in order to illustrate the procedure.

(a) Define cs(m) when (S m, S m+1) is a (5P, 6P) step.

(b) If (S m, S m+1) is a (2P, 3P) step then we define write(m), register(m) =

interestedP, and Val(m) = true.

(c) If (S m, S m+1) is a (4P(1), 4P) step then we define read(m), register(m) =

interestedQ, and Val(m) = S m+1(a).

We define SP = {MH | H is a local history of P}. So SP is the system of all

possible local history structures of P. If α is any sentence in the LHP language

(and in particular if α is in the LBP language and it speaks only about events in

P), then the statement “every local history of P satisfies α” is explicated as “if

M ∈ SP then M |= α”. In order to formally prove such statements, we shall define

a sentence β = βP in the LHP language whose ω models are just the structures

of SP. The program sentence β says that its models are indeed executions of the

algorithm of P. (If we are ready to use second order sentences then β can say that

the ordering < on the Event has the property that every nonempty set has a first

element, and so it can determine that the Event type is isomorphic to the natural

numbers, but this is not necessary.) In addition to determining the properties of

the ordering <, β is obtained as a conjunction of the following.

1. pre(0) is an initial state.

2. For every i, pre(i + 1) = post(i).

3. For every i, (pre(i), post(i)) is a local P step.

Writing out in detail β takes a lot of work, but should not offer any conceptual

difficulties. Here I limit myself to providing just one example. To say that sort

States indeed contains all the functions from the variables into their sorts is a

quantified sentence which says that for every choice of values for the variables

there is a state that has in fact these values. More formally, this sentence is

∀v1 ∈ {1P, . . . 6P}∀v2 ∈ {true, false}∀v3 ∈ {P,Q}

∃S ∈ S tates (at(S , PCP) = v1 ∧ at(S , a) = v2 ∧ at(S , b) = v3). (3)

 !" #$%%"&'()* &!" +, -.

 !

An ω LHP structure is an interpretation of the language in which the sort of

events in their < ordering is isomorphic to the set of natural numbers. Clearly, SP

is the set of all ω LHP structures M that satisfy β. So, if we want to formally prove

that a certain sentence α holds in every MH ∈ SP it suffices to prove that β ⊢ α.

Definable functions. If ϕ(x, y) is a formula such that the program sentence β

implies that for every event x there exists one and only one event y so that ϕ(x, y),

then we may introduce a new function symbol fϕ and use it in our formulas, after

adding the defining axiom to β: (y = fϕ(x)) ≡ ϕ(x, y). Here is an example. Let

ϕ(x, y) be the following formula in the LHP language.

If x is a cs event then y is a read event, y < x, there is no write event

w with y < w < x, and one of the following possibilities holds:

1. y is a read of register interestedQ with value false, or

2. y is a read of turn with value P.

If x is not a cs event then y =⊥.

It follows from β that for every event x there is one and only one y so that

ϕ(x, y). The proof may be long, but it is not difficult and it enables the definition

of the function sr(x) and then the proof of its properties. Similarly, the functions

winterested and wturn can be defined and the third part from the list of Basic Properties

of Figure 3, namely the Basic P properties, can be proved to follow from βP. In a

similar way the Basic Q properties follow from βQ.

Let GP be the general properties that are listed in Figure 3. These are assump-

tions that we make on the precedence relation <. Let RP be the register properties

that are listed in Figure 3. (Namely that for every register R, the set of read/write

events is linearly ordered by <, and that if r is a read event of register R, and if

w < r is a write event and Val(r) , Val(w) then there is a write in R event w′

so that w < w′ < r.) These RP statements are assumptions that we make on our

communication devices.

It follows that the list of basic properties of Figure 3 can be formally deduced

from the conjunction GP ∧ RP ∧ βP ∧ βQ. We formulate this theorem for future

reference.

Theorem 4.2. Statement GP∧RP∧βP∧βQ implies the Basic Properties of Figure

3.

5 A short discussion

I hope that my reader was satisfied with the behavioral proof in section 3 in which

the mutual exclusion property was deduced from the Basic Properties. That proof

 !"#$% &' ()* !" "# $% $&'()*%

 !

not only established the mutual exclusion property but actually showed how the

writes in the turn register determine the order in which the critical section events

are executed. I am not so sure about Section 4, in which a direction is indicated

how to prove that the basic properties indeed hold in every execution of the al-

gorithm. I guess that my reader was left with many doubts and questions. “Why

you shunt global states?” she may ask. “Would it not be possible to employ

global states (with which we are more familiar) and histories of global states in

order to define executions of the algorithms that satisfy the Basic Properties of

Figure 3?” That’s true, it is possible to transform a history of global states into a

Tarskian structure that supports the satisfaction relation for first order languages.

This would not be very different from what we did in Section 4, and the main

idea would be to take the step occurrences as elements of the resulting structure.

But there are three main (related) reasons why I prefer to base the proof on lo-

cal states of each of the processes. The Ockham razor principle advises us to

use the simplest possible tools, and since local histories of sequential processes

are conceptually simpler than interleaving histories with global states, they are

preferable. There is another reason. If we use global states and histories of global

states, then the registers, being variables of the global states, determine the rela-

tions between the read and write events in an obvious way. And then properties

like the RP properties of Figure 3 follow as theorems that we have to prove about

the resulting history structures. But conceptually, the register properties are as-

sumptions made on the communication devices (serial shared memory registers in

this case). That is, the theorem that we prove (Theorem 4.2) has the form: if the

read/write actions in the registers behave as required by their specifications and

if the processes execute their algorithms, then the correctness property (mutual

exclusion in our case) holds. So, it seems more appropriate to have the register

properties as assumptions than as consequences of some modeling paradigm.

Finally, it is our experience that the pattern of behavioral proofs exemplified

here in this extremely simple critical-section algorithm of Peterson is quite gen-

eral. Given a distributed algorithm for serial processes P1, . . . , PN that execute

concurrently, in order to prove a correctness statement α (such as the mutual ex-

clusion property) one formulates some basic properties BPi that are properties of

Pi’s executions alone without any reference to other processes and can be proved

by reference to local states and histories of Pi. Then one assumes the properties of

the communication devices, CP, which may be shared memory (for example reg-

ular registers) or message channels etc. And then α is shown to be a consequence

of the conjunction of CP and all the basic properties of the processes. Follow-

ing [2] in which the usage of Tarskian system executions (or event structures)

was promoted, we say that the “unrestricted” semantics of a distributed system

is the description of the system by local states and histories of the participating

processes. The unrestricted semantics is the description of the system when the

 !" #$%%"&'()* &!" +, -.

 !

communication devices operate in a random way with no relation between the dif-

ferent actions on the communication devices (such as read and write, or send and

receive events). In a slogan we can say that the correctness of a distributed system

is a consequence of its unrestricted semantics together with the specification of

the communication devices. In the assertional approach the semantics of the pro-

grams and communication devices are all interwoven within the notion of global

states, but in the behavioral approach there is a separation of issues; the seman-

tics of each process is done with local histories of that process and the semantics

of the communication devices is expressed without any connection to a specific

algorithm.

References

[1] U. Abraham. On Interprocess Communication and the Implementation of Multi-

Writer Atomic Registers. Theor. Comput. Sci. 149(2): 257-298 (1995).

[2] U. Abraham. Models for Concurrency. Gordon and Breach, (1999).

[3] U. Abraham. Logical Classification of Distributed Algorithms (Bakery Algorithms as

an example). Theor. Comput. Sci. 412(25): 2724-2745 (2011).

[4] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison Wes-

ley, 1988.

[5] G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process Lett. 12, 3

(June) 1981, 1133-1145.

[6] A. U. Shankar, An Introduction to Assertional Reasoning, ACM Comput. Surv.(1993)

225-262.

