
The Logic in Computer Science Column
by

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

http://research.microsoft.com/
 gurevich@microsoft.com

Analog and Hybrid Computation:
Dynamical Systems and

Programming Languages

André Platzer
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

aplatzer@cs.cmu.edu

Abstract

The purpose of this article is to serve as a light-weight introduction into the mys-
teries of analog and hybrid computing models from a dynamical systems and pro-
gramming languages perspective. Hybrid systems are the dynamical systems that
combine both models of computation, i.e., have interacting discrete and continuous
dynamics. They have found widespread application as models for embedded com-
puting in embedded systems as well as in cyber-physical systems. The primary role
hybrid systems have played so far is to allow us to model how a (discrete) computer
controller interacts with the (continuous) physical world and to analyze by means of
formal proofs or reachability analyzes whether this interaction is safe or not. Without
any doubt, such analyzes are of tremendous importance for our society, because they
determine whether we can bet our lives on those systems.

But this article argues that hybrid systems also have computational consequences
that make them an interesting subject to study from a computability theory perspec-
tive. Hybrid systems are described by hybrid programs or hybrid automata, both
hybrid generalizations of corresponding discrete computational models. The phe-
nomenon of discrete and continuous interplay, which hybrid systems provide, is fun-
damental and raises interesting computability questions. For example: what is com-
putable using the analogue computation capabilities of continuous dynamical sys-
tems? How do the discrete computation capabilities of discrete dynamical systems
relate to classical models of computation à la Church–Turing? What happens in hy-
brid computation, where discrete and continuous computation interact? Are the two
facets of computation, discrete and continuous, of fundamentally different character

aplatzer@cs.cmu.edu

or are they two sides of the same computational coin? This article answers some of
these questions using the rich theory that a logical characterization of hybrid systems
in differential dynamic logic of hybrid programs provides. But the article is meant
primarily as a manifesto for the significance and inherent beauty that these questions
possess in the first place.

1 Introduction

Embedded computing may be the “third revolution in information technology after the
birth of the computer itself and the introduction of the hyper-connected world of the Inter-
net” [1]. This third revolution is connecting all computational power to the physical world
and is raising the challenge of understanding how physics and computing interact. The in-
teraction of physics and computation mixes analog and digital and is important not just in
self-driving cars but also in aerospace applications, railway, robotics, and advanced medi-
cal devices. Hybrid systems [2–14] have been developed for the purpose of understanding
such combinations of discrete and continuous dynamics. Hybrid systems play a major
role in approaches for studying whether embedded computing systems and cyber-physical
systems satisfy crucial safety properties [15–19]. Answering such correctness questions
is, without any doubt, crucial to find out whether we can bet our lives on those systems,
which is what we do every time we get on an airplane or recently-built car.

This article serves as a light-weight introduction into the mysteries of hybrid computa-
tion and hybrid systems from a dynamical systems and programming languages perspec-
tive. Its focus is on the impact that discrete and analog computation as well as discrete
and continuous dynamical effects have on those systems. For example, while discrete
and continuous systems first appear to be of fundamentally different character, which was
the motivation for developing hybrid systems in the first place, they later turn out to be
surprisingly intimately related [14]. The theory of hybrid systems builds a logical com-
putational bridge between discrete and continuous systems (Fig. 1), bringing them into
perfect proof-theoretical alignment [14]. This article is primarily meant as a manifesto for
the significance and beauty of the intriguing questions related to a computational view on
hybrid systems.

This article is based on previous work [12–14, 20] to which we refer for more details.
The article serves as a gentle introduction with an explicit alignment with the theory of dy-
namical systems, based on prior work [20]. It also highlights the unnecessary complexities
that the shortcomings of hybrid time domains cause and advocates for a simpler approach
to hybrid systems that is based on programming languages and logic.

System

ContinuousDiscrete

Hybrid

Hybrid
Theory

Contin.
Theory

Discrete
Theory

Figure 1: The proof theory of hybrid systems provides a complete proof-theoretical bridge
aligning the theory of discrete systems and the theory of continuous systems

Structure of this Article. Section 2 starts with a light-weight introduction to general
dynamical systems, discrete dynamical systems, continuous dynamical systems, and then
illustrates important phenomena in hybrid systems. Section 3 discusses a programming
language for hybrid systems, whose discrete and continuous fragments correspond to com-
putational models for discrete dynamical systems and for continuous dynamical systems,
respectively. Section 4 reviews a logical characterization of hybrid systems in differential
dynamic logic [9]. Section 5 investigates the nature of hybridness by relating discrete and
continuous dynamics by way of their common generalization as hybrid systems. Section 6
wraps up with concluding remarks and discusses interesting possibilities for future work.

2 Dynamical Systems
In this section, we survey the basic principles behind a number of important classes of
dynamical systems. For a more comprehensive and more general overview and further
extensions of dynamical systems, we refer to the prior work that this section is based on
[20]. The theory of dynamical systems has been pioneered by Henri Poincaré [21].

2.1 General Dynamical Systems
A dynamical system [22, 23] is a mathematical model describing how a system changes
its state over time. In a nutshell, a dynamical system1 is a function ϕ : T × X → X of time

1 Formally, a dynamical system is an action of a monoid T on a state space X. But this more general
concept is not needed in this article.

T and state X whose value ϕt(x) ∈ X at time t ∈ T denotes the state that the system has at
time t when it originally started in the initial state x ∈ X. The system starts at the initial
state ϕ0(x) = x at time 0 and the evolution can proceed in stages, i.e., ϕt+s(x) = ϕs(ϕt(x))
for all s, t ∈ T and all x ∈ X; see Fig. 2. That is, if the dynamical system starts at x and
evolves for time t to reach ϕt(x) and, from that state, evolves again for time s to reach
ϕs(ϕt(x)), then it reaches the same state ϕt+s(x) by simply evolving for time t + s starting
from the initial state x right away.

x ϕt(x) ϕt+s(x)

ϕt+s

ϕt ϕs

ϕ0

Figure 2: Dynamical systems can evolve in stages

Different choices of the time domain T and the state space X lead to different classes
of dynamical systems. The time domain T is classically either discrete time (T = N
or T = Z), which proceeds in separate discrete steps, or continuous time (T = R or
T = [0,∞)), which has a dense continuous notion of progress of time. The state space X
is typically a vector space such as Rd where d ∈ N is the dimension of the system.

2.2 Discrete Dynamical Systems

Discrete dynamical systems [23] have an integer notion of time (e.g., T = N or T = Z) so
that the state evolves in discrete time steps, one step at a time, as typically described by a
difference equation or discrete state transition function. That is, one thing happens after
the other in clearly discernible steps. Classical computer programs, for example, proceed
in such discrete successive steps, with one computation step at a time.

Basic concept. A discrete dynamical system

ϕn+1(x) = f (ϕn(x)) (n ∈ N) (1)

is fully described by its generator f : X → X or transition function, where x ∈ X is its
initial state and ϕn(x) the state at time n ∈ N after having started from initial state x ∈ X.
That is, the generator f specifies which next state f (x) the discrete dynamical system

reaches after one step when it is currently in state x. The discrete dynamical system keeps
on making steps according to the generator f . It will run as follows

x = ϕ0(x)
f
7→ ϕ1(x)

f
7→ ϕ2(x)

f
7→ ϕ3(x)

f
7→ . . .

In other words, when f n denotes the n-fold composition of f (so f n+1(x) = f (f n(x)) and
f 0(x) = x), then the discrete dynamical system ϕ will run as

x
f
7→ f (x)

f
7→ f 2(x)

f
7→ f 3(x)

f
7→ . . .

Example 2.1 (Mandelbrot set). One simple example of a discrete dynamical system comes
from the context of Mandelbrot fractals, where a simple discrete operation is repeated
over and over again and its long-term behavior defines whether a point lies in that set
or not. The Mandelbrot set is the set of all complex numbers c ∈ C for which f n(0)
is bounded for all iterations n of the function f (z) = z2 + c. Recall that i2 = −1, so
f (x + yi) = (x + yi)2 + c = (x2 − y2) + 2xyi + c for a complex number z = x + yi with real
part x ∈ R and imaginary part y ∈ R. Hence, the generator corresponding to the complex
number c = a + bi is the function

f (x + yi) = (x2 − y2) + 2xyi + c = (x2 − y2 + a) + (2xy + b)i

When considering f as a real function of two real arguments x, y instead of one complex
argument z, this yields:

f (x, y) = (x2 − y2 + a, 2xy + b)

The Mandelbrot set is the set of parameters (a, b) ∈ R2 for which the dynamical system

(0, 0)
f
7→ f (0, 0)

f
7→ f 2(0, 0)

f
7→ f 3(0, 0)

f
7→ . . .

corresponding to the above generator f is bounded (it can be shown that the bound 2 is
sufficient). The initial trajectory shown in Fig. 3(left) for the parameter a = −0.6, b = −0.2,
for example, indicates that the state of the dynamical system stays bounded, which, indeed,
it will remain forever in this case. The initial trajectory shown in Fig. 3(right) for the
parameter a = 0.41, b = 0.3, however, will diverge, because it already leaves the Euclidean
norm bound 2.

Note that the full behavior of a discrete dynamical system is determined entirely by
its local generator f , which describes a step, plus the initial state, e.g., (0, 0) in the case
of the Mandelbrot system. It is still very complex to find out the global behavior of the
dynamical system in the long run, but locally in one step, it is precisely captured by f .

1

2

3

4

5

6

7

8

9

10

11
12 13

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1
x

-0.20

-0.15

-0.10

-0.05

0.05

y

1

2

34

5

6

7

8
9

10

11

12

13

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
x

-2.0

-1.5

-1.0

-0.5

0.5

1.0

y

Figure 3: Trajectory of the Mandelbrot dynamical system for a = −0.6, b = −0.2 (left)
and for a = 0.41, b = 0.3 (right) up to n = 13.

Difference equations. Another common way of describing the local generator of a dis-
crete dynamical systems is by a difference equation. When defining h(x) := f (x) − x the
discrete dynamical system (1) can be described equivalently by the difference equation

ϕn+1(x) − ϕn(x) = h(ϕn(x)) (n ∈ N) (2)

whenever the state space X is a vector space so that subtraction of states is defined. Both
formulations, (1) and (2) are equivalent. The latter emphasizes the local change h of the
state from one step to another as a function of the current state while the former emphasize
the local state update f , instead. The vector from n to n + 1 shown in Fig. 3 directly
illustrates the respective value of h(ϕn(0)), for example. Since there is a direct bijection
between discrete dynamical systems in explicit form (1) and difference equations (2), both
are often referred to informally as difference equations even if this is technically not quite
correct.

Computational models. Computation processes can be described by discrete dynamical
systems, for example. A computer system would start in an initial state ϕ0(x) = x at a time
0, perform a transition to a new state ϕ1(x) = f (x) at a time 1, then another transition to
a state ϕ2(x) = f (f (x)) at time 2, etc. until the computation terminates at a state ϕn(x) at
some time n. The scaling unit of these integer time steps is not relevant, but could be
chosen, e.g., as the cycle time of a processor or discrete controller.

It is worth noting, however, that the dynamical systems induced by classical computer
programs are both time- and space-discrete dynamical systems. That is, in addition to

having a discrete time domain T = N, they also operate over a discrete state space X such
as X = Zd. In fact, when looking more closely, actual computers have finite memory so
that X will even be a large but finite state space such as X = {0, 1}d. Program models and
automata models have been used to describe discrete dynamical systems and have been
used very successfully in verification [24–26].

In fact, the local generator f (respectively h when in difference equation form) needs
to be sufficiently computational in order to have a chance of being used for any analytic
purposes. Local generators often come from the transition function of a classical discrete
computer program or the transition function of an automaton. But they can also be de-
scribed using programs or machine models in more general models of computation such
as the Blum-Shub-Smale model often called “real Turing machines” even if it is a random
access machine [27]. In that case, the state space is some finite-dimensional real vector
space X = Rd, because real Turing machines compute with real-valued data, but the time
domain is still discrete T = N. The computation of the generator for the Mandelbrot
dynamical system can be described by a such real Turing machine [27]. It is, however,
undecidable whether a point a + bi is in the Mandelbrot set, which corresponds to whether
the Mandelbrot system for a, b always stays bounded, even in Blum-Shub-Smale’s strong
model of real computation [27]. Like everywhere else in computer science, it is, thus,
imperative to distinguish between sets and their computational representation.

Other successful models of real computation are type II computable functions from the
framework of computable analysis [28, 29], which, in a nutshell, study functions that can
be computed up to arbitrary precision. Unlike non-quality, equality of real numbers, for
example, is not type II computable, because, when two real numbers are different, we will
ultimately find out by comparing their digits. But if they are the same, we will have to
keep on comparing their digits for we will never be sure whether the next digit exhibits a
difference or not.

Nondeterministic discrete dynamical systems. Discrete dynamical systems are de-
scribed by transition functions, which makes them deterministic, i.e., for any initial state
x and any time n ∈ N the discrete dynamical system will be in exactly one state ϕn(x).
This is at odds with understanding nondeterministic discrete systems, in which an initial
state can have multiple successor states, because dynamical systems are supposed to be
(deterministic) functions satisfying the staging property depicted in Fig. 2. For the staging
property, ϕn(x) has to have a unique value determined only by n and x and the dynami-
cal system at hand, otherwise ϕs(ϕt(x)) does not have to agree with ϕt+s(x) if ϕt(x) were
allowed to take on different values nondeterministically.

With a slight change in perspective, however, dynamical systems are equally useful
for understanding nondeterministic discrete systems by going set-valued. The behavior

of systems with a discrete state transition relation R ⊆ X × X between previous states and
successor states is nondeterministic, but can still be captured as a discrete dynamical sys-
tem using the powerset 2X as the state space instead of X:

ϕn+1(X) = f (ϕn(X)) = {y : x ∈ ϕn(X) and (x, y) ∈ R} (n ∈ N)

when starting from a set X ⊆ X of initial states. This principle is reminiscent of the
powerset construction that converts nondeterministic finite automata into deterministic fi-
nite automata by considering a transition function on sets of states instead of a transition
relation on individual states [30].

Limits of discrete dynamical systems. However useful discrete dynamical systems are,
they cannot describe continuous processes, except as approximations at discrete points in
time, e.g., with a uniform discretization grid 1

n at the discrete points in time 0
n ,

1
n ,

2
n , . . . ,

n
n .

Discrete-time approximations give limited information about the behavior in between the
i
n , which causes fundamental differences [31] but also surprising similarities [14].

2.3 Continuous Dynamical Systems
Continuous dynamical systems have a real continuous notion of time (e.g. T = R≥0 or T =

R) so that the state evolves continuously along a function of real time, typically described
by a differential equation. The state of the system ϕt(x) then is a function of continuous
time t. In particular, unlike discrete dynamical systems, continuous dynamical systems
have no notion of “next state” or “next time”, because the time domain is (topologically)
dense with a dense ordering relation <.

Basic concept. The continuous dynamical system

dϕt(x)
dt

= f (ϕt(x)) (t ∈ R)

ϕ0(x) = x

is fully described by its generator f : X → X, where x ∈ X is the initial state at time 0. De-
pending on the duration of the solution of the above differential equation dϕt(x)

dt = f (ϕt(x)),
the continuous system may only be defined on some open subinterval of R rather than
globally on R. The time-derivative d

dt is only well-defined under additional assumptions,
e.g., that X is a differentiable manifold [22, 32] or simply some d-dimensional Euclidean
space Rd, which is what this article assumes. Many physical processes are continuous
dynamical systems described by differential equations.

Example 2.2 (Motion with constant velocity along a straight line). The movement of the
longitudinal position of a car of velocity v down a straight road from initial position p0 can
be described by the differential equation p′(t) = v with initial value p(0) = p0. The state
of the dynamical system at time t then is the solution ϕt(p0) = p0 + tv, which is defined at
all times t ∈ R.

Example 2.3 (Accelerated motion along a straight line). The evolution of the state of a
car accelerating with acceleration a on a straight line from initial position p0 and initial
velocity v0 can be described by the differential equation system p′(t) = v(t), v′(t) = a with
initial value p(0) = p0, v(0) = v0. The state of that dynamical system at time t is then the
vectorial solution

ϕt((p0, v0)) =

(
p0 + tv0 +

a
2

t2, v0 + at
)

(3)

The notation p′ for dp(t)
dt is a common simplification, as is the implicit use of v instead of

v(t). Thus, the differential equation system for the accelerated car would often be written:

p′ = v
v′ = a

(4)

Example 2.4 (Time square oscillator). A simple example of a continuous dynamical sys-
tem is described by the following differential equation

x′ = t2y

y′ = −t2x
t′ = 1

(5)

The initial trajectory shown in Fig. 4(left) for the initial value x = 0, y = 1, t = 0 illustrates
that the dynamical system stays bounded but oscillates increasingly fast. In this case, the
solution is

x(τ) = sin
(
τ3

3

)
y(τ) = cos

(
τ3

3

)
t(τ) = τ

(6)

Example 2.5 (Damped oscillator). Another example of a continuous dynamical system is
described by the following differential equation

x′ = y
y′ = −4x − 0.8y

(7)

x

y

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

x

y
1 2 3 4 5 6

-1.5

-1.0

-0.5

0.5

1.0

Figure 4: Trajectory of the time square oscillator for initial state x = 0, y = 1, t = 0 (left)
and of the damped oscillator for initial state x = 1, y = 0 (right) up to time 6.5

The initial trajectory shown in Fig. 4(right) for the initial value x = 1, y = 0 illustrates
that the dynamical system decays over time. In this case, the explicit global solution
representing the dynamical system is more difficult.

More details and many more examples of continuous dynamical systems can be found
in the literature [22, 32].

Computational models. Continuous processes can be described by the differential equa-
tions generating continuous dynamical systems. Just like discrete dynamical systems,
which need to have suitable computational descriptions (e.g. by programs) in order to
have a chance of being used for analytic purposes, continuous dynamical systems also
need sufficiently computational descriptions.

One way of describing a continuous dynamical system in a computational model is to
give a computational description of the system ϕt(x) as a function of initial state x and time
t. The motion with constant velocity from Example 2.2, for instance, can be described by
a linear solution ϕt(p0) = p0 + tv. The accelerated motion from Example 2.3 can be de-
scribed by the polynomial solution (3). Both symbolic expressions (linear and polynomial
terms) are easily represented as arithmetic terms on a computer and their values can be
computed easily, e.g., for every rational2 p0, t ∈ Q.

That principle does not extend to Example 2.4, because its solution (6) is not polyno-
mial. Even at rational t ∈ Q, the value of the solution can only be approximated, because
of the infinite power series sin x =

∑∞
n=0

(−1)n

(2n+1)! x2n+1 and likewise for cos. In computational

2Computations on bigger fields are possible, for example, for real algebraic p0, t ∈ Q̄ using real algebraic
number computations. Approximate computations are still possible for computable real numbers in the
extended sense of increasingly fine approximations of type II computability in computable analysis [28, 29].
Polynomial computations for reals p0, t ∈ R are allowed in Blum-Shub-Smale’s computational model [27].

models for the reals that tolerate approximate answers, sin and cos are still computable
[29], just only approximately so in the sense of type II computable analysis. For “most”
dynamical systems, the situation is even more dire, because there is not even a closed-form
symbolic solution of their differential equation at all. At least in those cases, the differ-
ential equation itself is a better computational representation of the continuous dynamical
system. In fact, we argue that the differential equation is always a better computational
representation, because the beautiful local perspective of differential equations is ruined
when working with its complicated global solutions.

Under certain assumption, there are ways of computing approximate solutions of ini-
tial value problems of differential equations by numerical integration [14, 33, 34]. This
depends crucially on additional assumptions on the system [31], such as known Lipschitz
bounds or indirectly via known moduli of continuity in the case of type II computable
functions [28, 29]. Otherwise, all relevant problems are undecidable even in strong mod-
els of computation even when tolerating arbitrarily large error bounds in the decision [31].

Type II computable functions in the sense of computable analysis [28, 29] have been
identified [35] with a generalized understanding of Shannon’s General Purpose Analog
Computer (GPAC) [36] and with initial value problems of polynomial differential equa-
tions [35]. GPACs were originally meant as the mathematical model for the differential
analyzer computer [37]. See Graça and Costa [38] for relations of GPACs to Moore’s real
recursive functions [39]. See Bournez et al. [35] for relations identifying GPACs, polyno-
mial differential equations, and computable analysis when allowing for convergence [35]
when, instead, considering a notion of computability for the GPACs that is based on con-
vergence to the output in the limit with computable error bounds as considered in modern
computability over the reals. Adding infinite convergent computations to the Blum-Shub-
Smale model [27] has been considered in analytic machines [40]. Generalizations of finite
automata from discrete time to continuous time have been considered as well [41] based
on work by Trakhtenbrot [2001].

Limits of continuous dynamical systems. Continuous dynamical systems are continu-
ous, so they have a hard time representing sudden discrete transitions. Discrete transitions
lead to discontinuities, which lead to interesting but very complicated generalized notions
of weak solutions, including Carathéodory solutions [34], Filippov solutions, Krasovskij
solutions, and Hermes solutions; see Hájek for an overview [43].

Nondeterministic continuous dynamical systems. Nondeterminism is not a phenomenon
that can only happen in discrete dynamical systems, but also in continuous dynamical sys-
tems; see [44] for an interesting perspective relating nondeterminism in continuous sys-
tems to the physical Church-Turing thesis. The most frequent source of nondeterminism

when working with continuous dynamical system comes from nondeterminism in the ini-
tial state while the rest of the continuous dynamical system stays deterministic. How long
a continuous system is being followed is another important source of nondeterminism in a
context where differential equations are embedded within hybrid systems.

Another source of nondeterminism directly in the continuous dynamical system itself
comes from differential inequalities [34] or more general differential-algebraic constraints
that also support nondeterministic disturbances [10]. In both cases, p′ ≤ v would, for ex-
ample, be a differential inequality describing that position p evolves with at most velocity
v, possibly less. Likewise, the differential inequality 1 ≤ p′ ≤ v describes a continuous
dynamical system whose position changes with at most velocity v but at least velocity 1. It
can have different velocities at different times, but is still restricted to be continuous, often
even continuously differentiable (unlike in Carathéodory solutions [34] and Filippov solu-
tions [45]). As in discrete dynamical systems, the fact that there is no unique velocity still
results in a set-valued dynamical system ϕ to represent the nondeterminism as a function.

2.4 Hybrid Systems

Both discrete and continuous dynamical systems are useful and have their respective ad-
vantages depending on the situation that they model. Of course, there is no reason to
believe that a given scenario only involves features that discrete dynamical systems are
good at, or only features where continuous dynamical systems shine. More often than not,
both features interact, and neither discrete nor continuous systems alone are a good fit for
an application. In that case, hybrid dynamical systems are helpful, because they allow
both discrete and continuous dynamics at once. Control decisions in systems are often of
a more discrete nature, because they can be triggered suddenly, possibly by computerized
controllers in response to certain events in the environment, while physical motion is a
continuous phenomenon. But there are many other sources of hybridness as well, includ-
ing fast physical processes that can suitably be abstracted by discrete dynamical systems.

Hybrid dynamical systems alias hybrid systems [2–14] are dynamical systems that
combine discrete dynamical systems and continuous dynamical systems. Discrete and
continuous dynamical systems are not just combined side by side to form hybrid systems,
but they can interact in interesting ways. Part of the system can be described by dis-
crete dynamics (e.g., decisions of a discrete-time controller), other parts are described by
continuous dynamics (e.g., continuous movement of a physical process), and both kinds of
dynamics interact freely in a hybrid system (e.g., when the discrete controller changes con-
trol variables of the continuous side by appropriate actuators such as when changing the
acceleration input for the continuous dynamics, or when the continuous dynamics deter-
mines the values of sensor readings such as position or velocity for the discrete decisions).

Embedded systems and cyber-physical systems are often modeled as hybrid systems, be-
cause they involve both discrete control and physical effects.

t0 t1 t2 t3 t4

-B

-b

0

A

B
R
A
K
IN
G
 /
 A
C
C
E
L
E
R
A
T
IO
N leader

follower

t0 t1 t2 t3 t4

V
E
L
O
C
IT
Y

t0 t1 t2 t3 t4

TIME
P
O
S
IT
IO
N

t0 t1 t2 t3 t4

t0 t1 t2 t3 t4

t0 t1 t2 t3 t4

A

0

-b

-B

Figure 5: Example
trajectory of a car
control system where
the follower collides
with the leader car

A typical example of a hybrid system is a car that drives on a
road according to a differential equation for the physical motion.
This car is subject to discrete control decisions, where discrete
controllers change the acceleration and braking of the wheels,
e.g., when the adaptive cruise control or the electronic stability
program takes effect. Figure 5 shows an example [46] how the
acceleration of a car changes instantaneously by discrete control
decisions (top), and how the velocity and position evolve contin-
uously over time (middle and bottom) in response to the control
input of acceleration. The situation in Fig. 5 illustrates bad control
choices, where the follower car brakes too late (at time t2) and then
crashes into the leader car at time t3. In particular, the follower car
made a bad decision to keep on accelerating at some point before
time t2, when it should have activated the brakes instead, because,
at time t2, no control choice (within the physical acceleration lim-
its −b to A of the car) could still prevent the crash. This is one
illustration of the phenomenon that bad control choices in the past
cause unsafety in the future and that we need to verify our control
choices now by considering their possible dynamical effects in the
future.

When using hybrid systems instead of discrete dynamical sys-
tems, neither is there a need to use unnatural discretizations for
continuous phenomena, because full continuous dynamics is al-
lowed in hybrid systems. Nor is there a need to represent the sys-
tem dynamics with the interesting but complicated discontinuous
Carathéodory [34], Filippov, Krasovskij, or Hermes solutions [43]
to understand jumps in continuous processes coming from sudden
changes such as by decisions to activate the brakes. Discrete jumps are allowed directly as
separate elements in hybrid systems. So, separately, both effects are easy to understand.
The position changes continuously with the velocity, which changes continuously with the
acceleration. And the acceleration is being decided by a computer controller. Each par-
tial behavior alone is easy to understand and they just interact with one another to form a
hybrid system. The overall system behavior can still be as complex as the original appli-
cation demands. But the individual parts of the hybrid system have a simpler behavior that
can be understood and analyzed by easier means.

Multi-dynamical systems. This phenomenon illustrates the keystone observation be-
hind our philosophy of multi-dynamical systems [13, 20], i.e., the principle to understand
complex systems as a combination of multiple elementary dynamical systems. The whole
point of multi-dynamical systems is that the pieces are easier than the full system. That ex-
plains why multi-dynamical systems help tame the complexity of cyber-physical systems,
because they understand systems in terms of their elementary parts, which are, by defi-
nition, easier than the full system. This compositional understanding of multi-dynamical
systems carries over to their compositional analysis techniques [13, 20]. These techniques
are based on proof steps that successively reduce a system to its parts and conclude cor-
rectness of the full system from correctness of its parts by compositional proof rules.

Basic concept. When formulating hybrid dynamical systems as a general dynamical
system, we run into an immediate difficulty. What is the time domain T supposed to be for
a hybrid system? It cannot be discrete N, because hybrid systems can evolve continuously
while their differential equations take effect. It cannot be continuous R, either, though,
because that does not fit to the discrete model of computation, one step at a time, that its
discrete parts perform. In particular, a hybrid system might very well make a couple of
discrete computation steps before proceeding with its continuous evolution again. Hence,
the time domain is some combination of discrete time N and continuous time R. There are
different possibilities for the time domain but they follow the same essential idea [12, 47].
Hybrid time domains [47] are some subset T ⊂ R × N, where the real component t ∈ R
of a hybrid time point (t, j) ∈ T measures the progress in real time and the natural number
component j ∈ N measures the progress in time steps. Hybrid time domains are such that
for each j ∈ N the set of all t ∈ R for which (t, j) ∈ T is some interval in the reals. While
there are a number of minor variations, such as whether the real intervals start at 0 or are
consecutive intervals, the only important feature of hybrid time domains is that a hybrid
time domain identifies a sequence of intervals. The complication is that the time domain
T depends on the particular execution of the hybrid system and that executions of hybrid
systems are highly nondeterministic. Since useful intuitions of more general interest arise
from the study of the impact of time in hybrid systems, we illustrate the basic concept of
a hybrid system by an instructive example.

Example 2.6 (Bouncing ball). Let us consider a bouncing ball; see Fig. 6. The bouncing
ball is flying through the air toward the ground, bounces back up when it hits the ground,
and will again fly up. Then, as gravity wins over, it will fly down again for a second
bounce, and so forth, leading to a lot of interesting physics including questions of how the
kinetic energy transforms into potential energy as the ball deforms by an elastic collision
on the ground and then reverses the deformation to gain kinetic energy [48].

Figure 6: Sample trajectory of a bouncing ball (plotted as position over real time)

Alternatively, we can put our multi-dynamical systems glasses on and realize that the
bouncing ball dynamics consists of two phases that, individually, are easy to describe and
interact to form a hybrid system. There is the flying part, where the ball does not do
anything but move according to gravity.3 And then there is the bouncing part, where the
ball bounces back from the ground. While there is more physics involved in the bouncing,
a simple description is that the bounce on the ground will make the ball invert its velocity
vector (from down to up) and slow down a little (since the friction loses energy). Both
aspects separately, the flying and the bouncing, are easy to understand. They interact as
a hybrid system, where the ball flies continuously through the air until it hits the ground
where it bounces back up by a discrete jump of its velocity from negative to positive.

The continuous flying part of a bouncing ball is easy to describe by a differential equa-
tion, since the ball at height h with vertical velocity v is falling subject to gravity g > 0:

h′ = v, v′ = −g (8)

The discrete bouncing part instantaneously negates the velocity of the ball around with a
3Taking the usual models of air resistance into account is not difficult either, but we refrain from doing

so here for simplicity.

certain damping coefficient 0 ≤ c < 1:

v :=−cv

This discrete change that updates the value of v to that of −cv only happens when the ball
just fell on the ground, which we posit is at height 0:

if(h = 0) v :=−cv (9)

We postpone the question how to best represent how exactly the continuous flying dynam-
ics (8) and the discrete bouncing dynamics (9) interact to form a hybrid system until we
discuss the modeling language for hybrid systems in Section 3.

t

j

1
2
3
4
5
6
7
8
9
10
11
12

t0 t1 t2 t3 t4 t5 t6

Figure 7: Hybrid time domain for the sample trajectory of a bouncing ball with discrete
time step j and continuous time t

What we already observe about the bouncing ball is that its trajectory follows an alter-
nating succession of a continuous trajectory following (8) for a certain nonzero duration
and an instantaneous discrete jump following (9) at a discrete instant of time. This succes-
sion of continuous and discrete transitions in Fig. 6 gives rise to the hybrid time domain T
shown in Fig. 7. Here, the intervals are either compact intervals [ti, ti+1] of positive dura-
tion ti+1 − ti > 0 during which the ball is flying through the air continuously according to
(8), or they are point intervals [ti, ti] and a discrete transition happens at that single point
in time that changes the sign and magnitude of the ball’s velocity by a bounce described
in (9). For example, [t1, t2] is the time interval during which the ball is flying after its first
bounce. And the point interval [t2, t2] represents the point in time during which the dis-
crete transition of bouncing happened. Fig. 8 shows the particular sample trajectory of the
bouncing ball from Fig. 6 plotted on its corresponding hybrid time domain T from Fig. 7.
That illustration separates out the various discrete and continuous pieces of the trajectory
of the bouncing ball into separate fragments of the two-dimensional hybrid time.

t

h

j

2

4

6

8

10

12

t0 t1 t2 t3 t4 t5 t6

Figure 8: Sample trajectory of a bouncing ball plotted as position h over its hybrid time
domain with discrete time step j and continuous time t

This particular illustration nicely highlights the hybrid nature of the bouncing ball
dynamics. The downside, however, is that the hybrid domain T shown in Fig. 7 is specific
to the particular bouncing ball trajectory from Fig. 6 and Fig. 8 and does not fit to any other
bouncing ball trajectories. This is in sharp contrast to the principles of general dynamical
systems ϕ : T ×X → X, in which the time domain T and state space X for ϕ are supposed
to be a single set for all trajectories, and not depend on the particular sample trajectory
considered so far. This is one of the reasons why we do not adopt the approach of working
with hybrid times [47], but instead, leave time implicit in our models. If time is ever
needed in a system, it can simply be added as a dedicated clock variable c with differential
equation c′ = 1 to the model.

Hybrid systems are just highly nondeterministic, even in their notion of time, which is
a scenario to which programming language and formal language models are better adapted
than the general dynamical systems model. Even the interaction of discrete and continuous
dynamics is often characterized by nondeterminism, since there is not always just one point
in time where control can pass from discrete to continuous or back. Nondeterminism, of
course, breaks the staging property illustrated in Fig. 2, and requires a set-valued treatment
to recover if only a fixed time domain T could be found. Having said that, it is perfectly
possible to fit hybrid dynamical systems into the model of general dynamical systems. All
it takes is a more sophisticated notion of time that remembers all previous actions (similar
to the actions in the operational semantics of hybrid games [49]) and allows permanent
forking of the subsequent execution to different futures. But these technical complications
are unnecessary when working in a clean programming language (Section 3).

Before we give up on hybrid time domains, however, we illustrate two more phe-
nomena that are worth noticing: subdivision and super-dense computations. While Fig. 7
shows one hybrid time domain for the sample trajectory in Fig. 6, there are infinitely many
other hybrid time domains that fit to the original sample trajectory shown in Fig. 6 and
just subdivide one of the intervals of a flying phase into two subintervals during which the
ball just keeps on flying according to (8) the way it did before. The first flying phase, for
example, could just as well be subdivided into the continuous phase where the ball is fly-
ing up according to (8) followed by a continuous phase where the ball is flying down, still
according to (8). That would yield a different hybrid time domain with multiple intervals
of positive duration in immediate succession but still essentially the same behavior of the
hybrid system in the end. So subdivision of time domains does not yield characteristically
different behavior. Likewise, there can be hybrid systems that have multiple discrete steps
(corresponding to point intervals in the hybrid time domain) in immediate succession be-
fore a continuous transition happens again. For example, a car could, successively, switch
gears and disable the adaptive cruise control system and engage a warning light to alert
the driver before it ceases control again to the continuous driving behavior. Hence, while

strict alternation of discrete and continuous transitions may be the canonical example to
have in mind, it is most definitely not the only relevant scenario.

Computational models. Like in the case of all other dynamical systems, hybrid systems
need to be represented in suitable computational models to have a chance to be amenable
to any form of computational analysis. There is a range of models for hybrid systems
[50], including hybrid automata [51, 52] and its variations [53], process-algebraic models
[54, 55], Petri nets [56], and programs [9–12]. All hybrid systems provide some form
of discrete transitions and (various classes of) differential equations, but differ in terms
of how those pieces are put together to form the hybrid systems. The representational
differences may have important impact on the ease of analysis but are not fundamental,
because translations between the models are possible at least in some cases [12, 55, 56].

Numerical approximation problem. What is important to realize for hybrid systems is
the permanent presence of the numerical approximation problem, which, in terms of its
ubiquity, is a numerical analogue of the halting problem. Verification of hybrid systems is
a very challenging problem. The verification problem is the problem to decide whether a
given hybrid system satisfies a given correctness property. Unfortunately, this problem is
undecidable even for very simple hybrid systems [5, 57]. Even for absurdly limited models
of hybrid systems, the verification problem is neither semidecidable nor co-semidecidable
numerically, even for a bounded number of transitions and when tolerating arbitrarily large
error bounds in the decision [31]. Minimal black box models of hybrid systems that only
support numerical evaluation of the system and its derivatives at points are insufficient,
because they lead to numerical undecidability even when tolerating arbitrarily large er-
ror bounds. That is why some form of additional input or symbolic representations are
required in order to guarantee that analysis results can be correct.

x1 x2 x3

B

j

g

Figure 9: Safe and unsafe indis-
tinguishable by ϕ(j)(xi) (for j≤2)

The basic intuition behind the numerical undecid-
ability result is shown in Fig. 9. Suppose an algorithm
could decide safety of a system numerically by evaluat-
ing the value of the system flow ϕ at points. If the algo-
rithm is a decision algorithm, it would have to terminate
in finite time, hence, after evaluating a finite number of
points, say x1, x2, x3 in Fig. 9. But from the information
that the algorithm has gathered at a finite number of
points, it cannot distinguish the good behavior ϕ (solid
flow safely outside B) from the bad behavior g (dashed
flow reaching bad region B). The same undecidability
result still holds even when restricting the flow ϕ to very special classes of functions and

when assuming that its derivatives ϕ(j)(xi) could be evaluated and even when tolerating
arbitrarily large error bounds in the decision. There is a series of extra assumptions and
bounds that make the problem (approximately) decidable again by imposing extra con-
straints on the system. Yet, by the general undecidability result, these extra bounds (and
several other bounds that have been proposed in related work) cannot be computed numer-
ically. Because of this strong numerical undecidability result, it is surprisingly difficult
but not impossible to get hybrid systems verification techniques sound using symbolic
representations and/or assuming knowledge of the behavior of the system on intervals
[12, 16, 58].

Limits of hybrid dynamical systems. Not all systems are hybrid systems. Some have
more general effects that pure hybrid systems cannot represent properly. Yet, there are
many interesting extensions of hybrid systems.

Distributed hybrid systems [59–66] are dynamical systems that combine distributed
systems [26, 67, 68] with hybrid systems, and can, thus, model systems of systems aspects
in hybrid systems (with their discrete and continuous dynamics). Distributed systems are
systems consisting of multiple computers that interact through a communication network.
They feature both (discrete) local computation and remote communication. Distributed
hybrid systems, instead, consist of multiple hybrid systems that interact through a com-
munication network, but may also interact through physical interactions. Distributed hy-
brid systems include multi-agent hybrid systems and hybrid systems where the number of
agents involved in the system evolves over time. Typical examples of distributed hybrid
systems are fleets of unmanned aerial vehicles or a platoon of cars on a highway.

Stochastic hybrid systems [62, 69–76] are dynamical systems that combine the dynam-
ics of stochastic processes [77–79] with hybrid systems. They either feature stochastic
effects only during the discrete dynamics [69] or during the continuous dynamics [70] or
both [72, 73, 76]. Stochastic hybrid systems play a role when systems have a large degree
of random noise and good probabilistic models are available for their distributions.

Hybrid games [49, 80–87] extend hybrid systems with adversarial effects coming from
multiple players with different goals in the hybrid system. Hybrid games are relevant when
it is important to understand how different agents with different goals might interact.

3 Models of Computation: Hybrid Programs
Hybrid programs (HP) [9, 12, 14, 88] are a programming language for hybrid systems.
HPs combine differential equations with conventional program constructs and discrete as-
signments. In order to highlight the design features of HPs, we first take a detour with a

hybrid version of the programming language C.

Hybrid C. One way to think of HPs is to understand them as regular imperative pro-
grams that can additionally use differential equations as program statements. That intu-
ition goes a long way except that it misses out on the other important feature of hybrid
systems: their ubiquitous nondeterminism. We will, nevertheless, start this exposition
first with this more narrow perspective of adding differential equations into conventional
discrete programs and see where that gets us. To make things concrete, we consider a pro-
gramming language with a notation akin to C, although any other imperative programming
language would work as well. Let us call this programming language Hybrid C, since it is
essentially C with differential equations.

The first attempt of representing the bouncing ball Example 2.6 in Hybrid C could be:

while (*) {
if (h == 0) {
v := -c*v;

}
h’=v,v’=-g;

}

This Hybrid C program consists of a loop that will repeatedly check with an if statement
whether the height h is zero and then reverse the velocity v by a discrete assignment.
For emphasis we use the notation := for assignments to make sure they are not confused
with differential equations. The most obvious problem with this Hybrid C program is
that it is not clear when the while loop should stop, because it unclear how long the ball
will be bouncing. And even a system component stops moving, we might still want to
consider that a valid behavior for some while, e.g., until all other system components
stopped as well. The right way of understanding hybrid systems is usually that they repeat
nondeterministically any number of times, which we indicate by while(*) in Hybrid C.

Now the next problem with the above Hybrid C program is that it is unclear how
long the system will follow the differential equation statement h’=v,v’=-g. Indeed, how
long exactly a system follows a continuous dynamics before a discrete step happens again
is usually highly nondeterministic. Even for time-triggered architecture implementations
that are trying to operate at certain fixed frequencies, such as 10Hz, practice still holds phe-
nomena like jitter in store, which cause variations in the time of operation. Indeed, for the
bouncing ball, 10Hz or any other fixed sampling period would be unsuitable, because the
system execution will never hit the interesting condition if (h == 0) that way.4 Conse-

4This problem is intimately related to the zero-crossing problem in numerical algorithms. Indeed,
floating-point algorithms approximating the executions of the Hybrid C program, e.g., by an Euler inte-

quently, the natural mode for a differential equation is that it evolves for a nondeterministic
amount of time, just like while(*).

Yet, hold on, the above Hybrid C program would also get in trouble if the differen-
tial equation evolved for too long. In that case, the ball would fall through the ground
to a negative height (h < 0) and will then keep on falling forever, because the condition
if (h == 0) will never be able to fire and rescue the ball by changing the sign of its
velocity again. That would be a sad loss of a perfectly reasonable bouncing ball. Con-
sequently, differential equations need to be constrained to remain within certain regions
called evolution domains. The relevant evolution domain for the bouncing ball is h ≥ 0,
because physics constrains the ball to remain above the ground. The notation we will adopt
to indicate that a continuous system follows a differential equation such as h′ = v, v′ = −g
only within such an evolution domain is conjunctively (&) as follows:

h′ = v, v′ = −g & h ≥ 0

Basic concept. Hybrid systems frequently exhibit nondeterminism in its various forms,
including in the discrete control structure and continuous dynamics. Nondeterminism
should, thus, be a first-class citizen in hybrid systems programming languages. That is
why the programming language of hybrid programs [9, 12, 14, 88] embraces nondeter-
minism. In fact, hybrid programs make nondeterminism the norm and allow deterministic
constructs as abbreviations for certain patterns of nondeterministic program operators. All
classical programming constructs are definable in terms of the operators that hybrid pro-
grams provide.

HPs form a Kleene algebra with tests [89], that is, they are formed like regular expres-
sions [90] just with more difficult atomic programs instead of letters of a finite alphabet.
Atomic HPs are instantaneous discrete jump assignments x := θ, tests ?H of a first-order
formula5 H of real arithmetic, and differential equation (systems) x′ = θ& H for a continu-
ous evolution restricted to the domain of evolution H, where x′ denotes the time-derivative
of x. Compound HPs are generated from atomic HPs by nondeterministic choice (∪), se-
quential composition (;), and Kleene’s nondeterministic repetition (∗). As terms, we use
polynomials with rational coefficients here, but divisions can be allowed as well when
guarding against singularities of divisions by zero; see [9, 12] for details.

Definition 3.1 (Hybrid program). HPs are defined by the following grammar (α, β are
HPs, x a variable, θ a term possibly containing x, and H a formula of first-order logic of

gration for the differential equation, will almost never satisfy the test if (h == 0). Real executions of
the bouncing ball, though, have no trouble finding when the height is zero and reacting appropriately. This
problem is looming in some form or another in almost all simulation tools.

5 The test ?H means “if H then skip else abort”.

real arithmetic):

α, β ::= x := θ | ?H | x′ = θ& H | α ∪ β | α; β | α∗

The first three cases are called atomic HPs, the last three compound. The test action ?H
is used to define conditions. Its effect is that of a no-op if the formula H is true in the
current state; otherwise, like abort, it allows no transitions so that system cannot execute.
That is, if the test succeeds because formula H holds in the current state, then the state
does not change, but the system execution continues normally. If the test fails because
formula H does not hold in the current state, then the system cannot execute and such runs
with failed tests are discarded and not considered any further.

Nondeterministic choice α ∪ β, sequential composition α; β, and nondeterministic rep-
etition α∗ of programs are as in regular expressions but generalized to a semantics in hybrid
systems. Nondeterministic choice α ∪ β expresses behavioral alternatives between the runs
of α and β. That is, the HP α ∪ β can choose nondeterministically to follow the runs of
HP α, or, instead, to follow the runs of HP β. The sequential composition α; β models that
the HP β starts running after HP α has finished (β never starts if α does not terminate).
In α; β, the runs of α take effect first, until α terminates (if it does), and then β contin-
ues. Observe that, like repetitions, continuous evolutions within α can take more or less
time, which causes uncountable nondeterminism. This nondeterminism occurs in hybrid
systems, because they can operate in so many different ways, which is as such reflected in
HPs. Nondeterministic repetition α∗ is used to express that the HP α repeats any number
of times, including zero times. When following α∗, the runs of HP α can be repeated over
and over again, any nondeterministic number of times (≥0).

Example 3.2 (Single car). As an example, consider a simple car control scenario. We de-
note the position of a car by x, its velocity by v, and its acceleration by a. From Newton’s
laws of mechanics, we obtain a simple kinematic model for the longitudinal motion of the
car on a straight road, which can be described by the differential equation x′ = v, v′ = a.
That is, the time-derivative of position is velocity (x′ = v) and, simultaneously, the deriva-
tive of velocity is acceleration (v′ = a). We restrict the car to never drive backwards by
specifying the evolution domain constraint v ≥ 0 and obtain the continuous dynamical
system x′ = v, v′ = a & v ≥ 0. In addition, suppose the car controller can decide to accel-
erate (represented by a := A) or brake (a :=−b), where A ≥ 0 is a symbolic parameter for
the maximum acceleration and b > 0 a symbolic parameter describing the brakes. The
HP a :=−b ∪ a := A describes a controller that can choose nondeterministically to brake
or accelerate. Accelerating will only sometimes be a safe control decision, so the discrete
controller in the following HP requires a test ?H to be passed in the acceleration choice:

cars ≡
(
(a :=−b ∪ (?H; a := A)); x′ = v, v′ = a & v ≥ 0

)∗ (10)

This HP, which we abbreviate by cars, first allows a nondeterministic choice of braking
or acceleration (if the test H succeeds), and then follows the differential equation for an
arbitrary period of time (that does not cause v to enter v < 0). The HP repeats nondeter-
ministically as indicated by the ∗ repetition operator. Note that the nondeterministic choice
(∪) in (10) can nondeterministically select to proceed with a :=−b or with ?H; a := A. Yet
the second choice can only continue if, indeed, formula H is true about the current state
(then both choices are possible). Otherwise only the braking choice will run successfully,
because the other choice will fail test ?H so that that run will be discarded. With this
principle, HPs elegantly separate the fundamental principles of (nondeterministic) choice
from conditional execution (tests).

Which formula is suitable for H depends on the control objective or property we care
about. A simple guess for H like v < 8 has the effect that the controller can only choose to
accelerate at lower speeds. This condition alone is insufficient for most control purposes
and will leave the car possibly unsafe.

Semantics. HPs have a compositional semantics. We define their semantics by a reach-
ability relation and refer to previous work for their trace semantics [12, 91]. The transition
semantics of HP α is a relation ρ(α) defining which final states are reachable from which
initial states by running α to completion. That is, (ν, ω) ∈ ρ(α) specifies that final state ω is
reachable from the initial state ν by executing HP α. A state ν is a mapping from variables
to R. The set of states is denoted S. We denote the value of term θ in ν by [[θ]]ν. The state
νd

x agrees with ν except for the interpretation of variable x, which is changed to d ∈ R. We
write ν |= χ iff the first-order formula χ is true in state ν (as defined formally in Section 4).

Definition 3.3 (Transition semantics of HPs). Each HP α is interpreted semantically as a
binary reachability relation ρ(α) ⊆ S × S over states, defined inductively by

• ρ(x := θ) = {(ν, ω) : ω = ν except that [[x]]ω = [[θ]]ν}
That is, final stateω differs from initial state ν only in its interpretation of the variable
x, which ω changes to the value that the right-hand side θ has in the initial state ω.

• ρ(?H) = {(ν, ν) : ν |= H}
That is, the final state ν is the same as the initial state ν (no change) but there only
is such a self-loop transition if test formula H holds in ν, otherwise no transition is
possible at all and the system is stuck because of a failed test.

• ρ(x′ = θ& H) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= H for all 0 ≤ t ≤ r for a so-
lution ϕ : [0, r]→ S of any duration r}
That is, the final state ϕ(r) is connected to the initial state ϕ(0) by a continuous func-
tion of some duration r ≥ 0 that solves the differential equation and satisfies H at all

times, when interpreting ϕ(t)(x′) def
=

dϕ(ζ)(x)
dζ (t) as the derivative of the value of x over

time [9].

• ρ(α ∪ β) = ρ(α) ∪ ρ(β)
That is, α ∪ β can do any of the transitions that α can do as well as any of the
transitions that β is capable of.

• ρ(α; β) = ρ(β) ◦ ρ(α) = {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)}
That is, α; β can do any transitions that go through any intermediate state µ to which
α can make a transition from the initial state ν and from which β can make a transi-
tion to the final state ω.

• ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true.

That is, α∗ can repeat α any number of times, i.e., for any n ∈ N, α∗ can act like the
n-fold sequential composition αn would.

We refer to a book [12] for a comprehensive background and for an elaboration how the
case r = 0 (in which the only condition is ϕ(0) |= H) is captured by the above definition for
differential equations. Time itself does not play a special role. Whenever a clock variable t
is needed in a HP, it can be axiomatized by t′ = 1. Finally observe how easily the relational
semantics of HPs deals with the ubiquitous nondeterminism of hybrid systems. The same
simplicity can be obtained also for a trace semantics of hybrid programs that retains the
intermediate states during hybrid trajectories [12, 91].

Example 3.4. Continuing Example 3.2, Fig. 10a illustrates the structure of the transition
system of (10) for the (unsafe) choice of H ≡ (v < 8). Fig. 10b illustrates how one
particular transition from initial state ν to one final state follows the marked transitions
through two iterations of the loop, which justifies (ν, ω) ∈ ρ(cars).

Definable operators. HPs only provide the logically fundamental operators of hybrid
systems. All classical WHILE programming constructs and all hybrid systems can be
defined from those fundamental operators [12] including the ones we alluded to in the
development of the Hybrid C language. We, e.g., write x′ = θ for the unrestricted dif-
ferential equation x′ = θ& true. We allow differential equation systems and use vectorial
notation. Vectorial assignments are definable from scalar assignments and ; using auxiliary
variables.6 Other program constructs can be defined easily [12]. For example, nondeter-

6A vectorial assignment x1 := θ1, . . . , xn := θn is definable by x̀1 := x1; . . . ; x̀n := xn; x1 := θ̀1; . . . ; xn := θ̀n

where θ̀i is θi with x j replaced by x̀ j for all j. Memorizing the old values of x j in x̀ j before assigning to
xi is necessary for a simultaneous vectorial assignment if θi mentions another x j, which would already be
overwritten if j < i.

a.

ν ∪

a :=−b

?v < 8 a := A
ω

x′′ = a

b.

ν

v = 9
x = 0 ν

∪

µ1

v = 9
x = 0
a = −2

a :=−b

?v < 8
fails and
cut off

µ1

a := A

µ2

v = 7
x = 8
a = −2

x′′ = a
stay 1s

µ2

v = 7
x = 8
a = −2

∪

µ2

a :=−b

?v < 8

µ3

v = 7
x = 8
a = 1

a := A

ω

v = 9
x = 24
a = 1

x′′ = a
stay 2s

Figure 10: Transition structure and transition example in simple car

ministic assignments of any real value to x, if-then-else statements, and while loops can
be defined by the following abbreviations, respectively:

x := ∗ ≡ x′ = 1 ∪ x′ = −1
if (H) then α else β fi ≡ (?H;α) ∪ (?¬H; β)

if (H) then α ≡ (?H;α) ∪ ?¬H
while(H)α ≡ (?H;α)∗; ?¬H

(11)

The reason why if (H) then α else β fi is the same as (?H;α) ∪ (?¬H; β), for example, is
that, after the nondeterministic choice, exactly one of the two tests ?H and ?¬H will suc-
ceed the other one will fail. Hence, even though the right-hand side of (11) starts out with
a nondeterministic choice, only one choice will ever work out from any current state. That
is, the only possible nondeterministic choices that are not aborted and discarded because
of failing a subsequent test are those in which H holds and α executes or in which ¬H
holds and β executes. Since the if-then-else makes this determinism apparent that is im-
plicit in the mutual exclusiveness of the test conditions, if-then-else is directly supported
in the implementation of dL in the theorem prover KeYmaera [17] even if it is not needed
in theory.

Nondeterministic assignment x := ∗ assigns any real number to the variable x and is

frequently used in hybrid system models to represent that arbitrary control choices are
possible. Often, those arbitrary control choices are subsequently restricted to a possible
range using a test.

Example 3.5 (Bouncing ball). Continuing Example 2.6, consider a hybrid program model
of the bouncing ball:(

if (h = 0) then
c := ∗; ?(0 ≤ c < 1);
v := −cv

fi;
h′ = v, v′ = −g & h ≥ 0)∗

The if-then statement can be expanded using the definitions in (11), which leads to the
hybrid program(

(?(h = 0);
c := ∗; ?(0 ≤ c < 1);
v := −cv

) ∪ (?h , 0);
h′ = v, v′ = −g & h ≥ 0)∗

Observe in both hybrid programs how the damping coefficient c is set to an arbitrary real
number by way of c := ∗ and then subsequently restricted by the test ?(0 ≤ c < 1) to lie
within the interval [0, 1). The overall effect of c := ∗; ?(0 ≤ c < 1) is to assign an arbitrary
real number from [0, 1) to c. This is a frequent modeling pattern to have a nondeterministic
assignment followed by a test with the requisite range restrictions.

Hierarchies. Hybrid programs are designed as a minimal extension of conventional dis-
crete programs. They characterize hybrid systems succinctly by adding continuous evo-
lution along differential equations as the only additional primitive operation to a regular
basis of conventional discrete programs. Their operations are interpreted over the domain
of real numbers as required for hybrid systems. This gives rise to an elegant syntac-
tic hierarchy [12] of discrete, continuous, and hybrid systems, for which the respective
fragments of hybrid programs are a computational model, summarized in Table 1. The
fragment consisting of just differential equations with evolution domain constraints corre-
sponds to purely continuous dynamical systems [92]. The fragment of hybrid programs
without differential equations corresponds to conventional discrete programs generalized
over the reals or to discrete-time dynamical systems [93]. The fragment without discrete

assignments corresponds to switched continuous systems [6, 93]. Only the composition of
mixed discrete assignments and continuous evolutions gives rise to truly hybrid behavior.

Table 1: Classification of hybrid programs and correspondence to dynamical systems
Hybrid program class Dynamical systems class

differential equations continuous dynamical systems
no assignments switched continuous dynamical systems
no differential equations discrete dynamical systems
no differential equations, over N discrete while programs
general hybrid programs hybrid dynamical systems

4 Logical Characterizations of Hybrid Systems
Basic concept. Within a single specification and verification language, differential dy-
namic logic dL [9, 12, 14, 88] combines operational system models with means to talk
about the states that are reachable by system transitions. Differential dynamic logic dL is
a dynamic logic [94, 95] for hybrid systems. It combines first-order real arithmetic [96]
with first-order modal logic [97, 98] and dynamic logic [94, 95] generalized to hybrid sys-
tems. (Nonlinear) real arithmetic is necessary for describing concepts like safe regions of
the state space and real-valued quantifiers are for quantifying over the possible values of
system parameters or states.

The logic dL provides parametrized modal operators [α] and 〈α〉 that refer to the states
reachable by hybrid program α and can be placed in front of any formula. The modal
operators [α] and 〈α〉 refer to all (modal operator [α]) or some (modal operator 〈α〉) state
reachable by following HP α. The formula [α]φ expresses that all states reachable by
hybrid program α satisfy formula φ. Likewise, 〈α〉φ expresses that there is at least one
state reachable by α for which φ holds. These modalities can be used to express necessary
or possible properties of the transition behavior of α in a natural way. They can be nested
or combined propositionally. The logic dL supports quantifiers like ∃p [α]〈β〉φ which
expresses that there is a choice of parameter p (expressed by ∃p) such that for all possible
behaviors of hybrid program α (expressed by [α]) there is a reaction of hybrid program β
(i.e., 〈β〉) that ensures φ. The logic dL is entirely flexible, so the parameter p that is
quantified in these formulas may appear in the hybrid programs α, β as a system parameter
as well as in the formula φ, where it would then be a parameter in the postcondition.

Definition 4.1 (dL formula). The formulas of differential dynamic logic (dL) are defined

by the grammar (where φ, ψ are dL formulas, θ1, θ2 terms, x a variable, α a HP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀x φ | ∃x φ | [α]φ | 〈α〉φ

Operators >,≤, <,∨,→,↔ can be defined as usual in classical logic, e.g., (φ → ψ) ≡
(¬φ ∨ ψ). We use the notational convention that quantifiers and modal operators bind
strong, i.e., their scope only extends to the formula immediately after. Thus, [α]φ ∧ ψ ≡
([α]φ) ∧ ψ and ∀x φ ∧ ψ ≡ (∀x φ) ∧ ψ. In our notation, we also let ¬ bind stronger than
∧, which binds stronger than ∨, which binds stronger than →,↔. Thus, ¬A ∧ B ∨ C →
D ∨ E ∧ F ≡ (((¬A) ∧ B) ∨C)→ (D ∨ (E ∧ F)).

A dL formula is valid if it is true in all states (as will be defined in Def. 4.3 below).
One common use case is the dL formula A→ [α]B, which corresponds to a Hoare triple
[99, 100], but for hybrid systems. It is valid if, for all states: if the dL formula A holds (in
the initial state), then the dL formula B holds for all states reachable by following the HP
α. That is, A→ [α]B is valid if B holds in all states reachable by HP α from initial states
satisfying A.

Example 4.2 (Single car). First, consider a very simple dL formula:

v ≥ 0 ∧ A ≥ 0→ [a := A; x′ = v, v′ = a]v ≥ 0

This dL formula expresses that, when, initially, the velocity v and maximal acceleration A
are nonnegative, then all states reachable by the HP in the [·] modality have a nonnegative
velocity (v ≥ 0). The HP first performs a discrete assignment a := A setting the acceler-
ation a to maximal acceleration A, and then, after the sequential composition (;), follows
the differential equation x′ = v, v′ = a where the derivative of the position x is the velocity
(x′ = v) and the derivative of the velocity is the chosen acceleration a (v′ = a). This dL
formula is valid, because the velocity will never become negative when accelerating. It
could, however, become negative when choosing a negative acceleration a < 0, which is
what this simple dL formula does not allow.

Next, consider the following dL formula, where cars denotes the HP from (10) in
Example 3.2 that always allows braking but acceleration only when χ ≡ v ≤ 20 holds:

v ≥ 0 ∧ A ≥ 0 ∧ b > 0→ [cars]v ≥ 0

This dL formula is trivially valid, simply because the postcondition v ≥ 0 is implied
by both the precondition and by the evolution domain constraint of (10). Because the
invariant is (trivially) implied by the precondition, v ≥ 0 also holds initially. It is also
implied by the evolution domain constraint and the system has no runs that leave the
evolution domain constraint. Note that this dL formula would not be valid, however, if we
removed the evolution domain constraint, because the controller would then be allowed
nondeterministically to choose a negative acceleration (a :=−b) and stay in the continuous
evolution arbitrarily long.

Semantics. The meaning of differential dynamic logic is a suitable combination of the
semantics of first-order real arithmetic [96], first-order modal logic [97, 98], and dynamic
logic [94, 95]. The semantics defines, which formula φ is true in which state ν. We write
ν |= φ if φ is true in state ν.

Definition 4.3 (dL semantics). The satisfaction relation ν |= φ for dL formula φ in state ν
is defined inductively and as usual in first-order modal logic (of real arithmetic):

• ν |= (θ1 = θ2) iff [[θ1]]ν = [[θ2]]ν
That is, an equation is true in a state ν iff the terms on both sides evaluate to the
same number.

• ν |= (θ1 ≥ θ2) iff [[θ1]]ν ≥ [[θ2]]ν
That is, a greater-or-equals inequality is true in a state ν iff the term on the left
evaluate to a number that is greater or equal to the value of the right term.

• ν |= ¬φ iff it is not the case that ν |= φ
That is, a negated formula ¬φ is true in state ν iff the formula φ itself is not true in ν.

• ν |= φ ∧ ψ iff ν |= φ and ν |= ψ
That is, a conjunction is true in a state iff both conjuncts are true in said state.

• ν |= ∀x φ iff νd
x |= φ for all d ∈ R

That is, a universally quantified formula ∀x φ is true in a state iff its kernel φ is true
in all variations of the state, no matter what real number d the quantified variable x
evaluates to in the variation νd

x.

• ν |= ∃x φ iff νd
x |= φ for some d ∈ R

That is, an existentially quantified formula ∃x φ is true in a state iff its kernel φ is
true in some variation of the state, for a suitable real number d that the quantified
variable x evaluates to in the variation νd

x.

• ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α)
That is, a box modal formula [α]φ is true in state ν iff postcondition φ is true in all
states ω that are reachable by running α from ν.

• ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α)
That is, a diamond modal formula 〈α〉φ is true in state ν iff postcondition φ is true in
at least one state ω that is reachable by running α from ν.

If ν |= φ, then we say that φ is true at ν. A dL formula φ is valid, written � φ, iff ν |= φ for
all states ν.

Axiomatization. Differential dynamic logic dL is not just a specification language but
also a verification language for hybrid systems. The logic dL comes with an axiomati-
zation in proof calculi, including a Gentzen-type sequent calculus suitable for automation
[9] as well as a Hilbert-type calculus characterizing the logical essentials [14]. Using this
axiomatization, interesting properties of hybrid systems can be verified by a proof from the
axioms. The Hilbert-type axiomatization of differential dynamic logic [13, 14] is shown
in Fig. 11. Here, we highlight a few rules and refer to prior work [13, 14] for a detailed
explanation of the axiomatization.

[:=] [x := θ]φ(x)↔ φ(θ)

[?] [?H]φ↔ (H → φ)

[′] [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

[&] [x′ = θ& H]φ↔ ∀t0=x0 [x′ = θ]
(
[x′ = −θ](x0 ≥ t0 → H)→ φ

)
[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α; β]φ↔ [α][β]φ

[∗] [α∗]φ↔ φ ∧ [α][α∗]φ

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

C [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)) (v < α)

B ∀x [α]φ→ [α]∀x φ (x < α)

V φ→ [α]φ (FV(φ) ∩ BV(α) = ∅)

G
φ

[α]φ

Figure 11: Differential dynamic logic axiomatization

We write ` φ iff dL formula φ can be proved with dL rules from dL axioms (including
first-order rules and axioms); see Fig. 11. That is, a dL formula is inductively defined to
be provable in the dL calculus if it is an instance of a dL axiom or if it is the conclusion
(below the rule bar) of an instance of one of the dL proof rules Gödel generalization G,

modus ponens, ∀-generalization, whose premises (above the rule bar) are all provable. The
dL axiomatization is sound and relatively complete [9, 14].

In axiom [′], y(·) is the (unique [34, Theorem 10.VI]) solution of the symbolic initial-
value problem y′(t) = θ, y(0) = x. Given such a solution y(·), continuous evolution along
that differential equation can be replaced by a discrete assignment x := y(t) with an addi-
tional quantifier for the evolution time t. It goes without saying that variables like t are
fresh in Fig. 11. Notice that conventional initial-value problems are numerical with con-
crete numbers x ∈ Rd as initial values, not symbols x [34]. This would not be enough for
our purpose, because we need to consider all states in which the system could start, which
may be uncountably many. That is why axiom [′] solves one symbolic initial-value prob-
lem, because we could hardly solve uncountable many numerical initial-value problems.
The side condition that y(·) is, indeed, a solution of the symbolic initial-value problem is
decidable for simple solutions (such as polynomials). For more complicated differential
equations, differential invariants and related techniques [10, 101, 102] are used to prove
properties of differential equations by induction.

Sequential compositions are proven using nested modalities in axiom [;]. From right
to left: If, after all α-runs, all β-runs lead to states satisfying φ (i.e., [α][β]φ holds), then
also all runs of the sequential composition α; β lead to states satisfying φ (i.e., [α; β]φ
holds). The converse implication uses the fact that if after all α-run all β-runs lead to φ
(i.e., [α][β]φ), then all runs of α; β lead to φ (that is, [α; β]φ), because the runs of α; β
are exactly those that first do any α-run, followed by any β-run. Again, it is crucial that
dL is a full logic that considers reachability statements as modal operators, which can be
nested, for then both sides in [;] are dL formulas again (unlike in Hoare logic [100], where
intermediate assertions need to be guessed or computed as weakest preconditions for β and
φ). Note that dL can directly express weakest preconditions, because the dL formula [β]φ
or any formula equivalent to it already is the weakest precondition for β and φ. Strongest
postconditions are expressible in dL as well.

Axiom I is an induction schema for repetitions. Axiom I says that, if, after any
number of repetitions of α, invariant φ remains true after one (more) iteration of α (i.e.,
[α∗](φ→ [α]φ)), then φ holds after any number of repetitions of α (i.e., [α∗]φ) if φ holds
initially. That is, if φ is true after running α whenever φ has been true before, then, if φ
holds in the beginning, φ will continue to hold, no matter how often we repeat α in [α∗]φ.

The dL axiomatization in Fig. 11 uses a modular axiom [&] that reduces differen-
tial equations with evolution domain constraints to differential equations without them by
checking the evolution domain constraint backwards along the reverse flow. It checks H
backwards from the end of the evolution up to the initial time t0, using that x′ = −θ follows
the same flow as x′ = θ, but backwards. See prior work for an elaboration and more details
[13].

5 Hybrid Relations between Discrete and Continuous Dy-
namical Systems

Discrete dynamical systems and continuous dynamical systems start out on quite differ-
ent premises, emphasizing step-wise discrete successions of change (Section 2.2) versus
smooth or continuous forms of change (Section 2.3), respectively. That makes discrete
and continuous dynamical systems and, thus, discrete and continuous computation, ap-
pear to be fundamentally and characteristically different. In fact, this difference was one
important original motivation for inventing hybrid systems in the first place (Section 2.4)
as a way of describing how two independent and different sources of dynamical behav-
ior combine [2, 51, 103]; we refer to the literature for a review of the history of hybrid
systems [104]. Of course, this also makes analysis questions of hybrid systems highly
undecidable (not even semidecidable) and hybrid systems logics necessarily incomplete,
because they combine two independent sources of incompleteness [9], the discrete and the
continuous. Each of those sources of incompleteness follow by a simple corollary [9] to
Gödel’s incompleteness theorem [105].

Surprisingly, however, it turns out that discrete and continuous dynamics are not even
quite so unrelated [9, 14]. For example, it has been shown that three-dimensional differ-
ential equations [106, 107] can simulate universal Turing machines on the relevant grid
points. In an extended sense with approximation and robustness, so can polynomial differ-
ential equations [108]. The basic observations making these results happen is that Turing
machines only take on values on a grid in time and space. That is, as discrete dynamical
systems, they produce state change at a certain rate, say, 1 computation step per second,
since T = Z or T = N. They also only take on state values from a discrete set, say T = Zd.
In a nutshell, continuous dynamical systems can be made to agree with the intended com-
putations of a classical discrete Turing machine on a discrete grid, say Zd, that is chosen
to correspond to the discrete states of the discrete dynamical system of a classical Turing
machine. At the values off the grid, the continuous dynamical system can take on any
value to continuously move from the previous state at time n ∈ N to the next state at time
n + 1. Conversely, computability results for solutions of differential equations hold on
open sets under existence and uniqueness assumptions and when rational interval approx-
imations are given [109], which are necessary assumptions [31]. This result is based on
enumerating all tubes around solutions and checking whether a tube covers the solution
with the required accuracy.

What about general discrete dynamical systems, which, like Turing machines, have
a discrete time domain T = N, but, unlike classical Turing machines, can compute on a
dense continuous state space X = Rd rather than on a discrete X = Zd or even finite state
space X = {0, 1}d like Turing machines do? In that case, the relevant states are the dense

set Rd, not just the grid Zd with arbitrary values off grid, i.e., on Rd \ Zd. Can discrete
dynamical systems be simulated in some sense by continuous dynamical systems?

And what about hybrid systems? Hybrid systems mix discrete and continuous dynam-
ics. Can their mixed discrete and continuous behavior be captured in some way using
continuous dynamics alone? What if its behavior consists of some fixed finite number of
discrete and continuous transitions? What if the hybrid system performs an arbitrary un-
known number of repetitions of interactions of discrete and continuous dynamics like they
usually do?

What about the other way around? Since at least some discrete dynamical systems
like Turing machines can be emulated in continuous systems, can continuous systems also
somehow be characterized in discrete systems?

Naïve ways of relating discrete and continuous dynamical systems are bound to fail. It
is, for example, not generally the case that a property F transfers from a continuous system
to its Euler discretization, nor vice versa. That is, neither the following equivalence nor
the left-to-right implication nor the right-to-left implication generally holds:

[x′ = θ]F
?
↔ [(x := x + hθ)∗]F (12)

This formula would relate a property F of a continuous dynamical system x′ = θ to prop-
erty F of its Euler discretization (x := x + hθ)∗ with discretization step size h > 0 if only
it were true. Unfortunately, as such, the formula is not generally valid. Fig. 12 illustrates
a counterexample to formula (12) from prior work [14], to which we refer for further de-
tails. The error of the Euler discretization grows quickly compared to the true solution
in Fig. 12. For example, F ≡ (x2 + y2 = 1) is an invariant of the true solution but not its
approximation. On the bright side, the error can be smaller for some (not all) smaller
discretization steps h and the error is quite reasonable for a certain period of time.

These aspects are one corner stone for a complete logical alignment of discrete and
continuous dynamics using constructive proof-theoretical techniques [14]. The key to un-
derstanding how discrete and continuous dynamics relate is via their joint generalization as
hybrid systems in their logical characterizations as fragments of differential dynamic logic
[14]. Hybrid systems have been aligned with both continuous dynamical systems [9] and
with discrete dynamical systems [14] by constructive completeness arguments showing
that all valid properties of hybrid systems are provable in the dL axiomatization from ele-
mentary properties of continuous systems to which they reduce constructively and likewise
for discrete systems [9, 14]. Since every discrete system is a hybrid system and every con-
tinuous system also is a hybrid system, these two reductions mutually align discrete and
continuous systems with one another [14, 110]. That is, discrete and continuous systems
can be related to one another indirectly after embedding both into the joint generaliza-
tion of hybrid systems and then analyzing how hybrid systems relate to their fragments;

-5 5 10
x

-5

5

10

y

2 4 6 8 10 12
t

-5

5

10

x y

Figure 12: (left) Dark circle shows true solution, light line segments show Euler approxi-
mation for discretization step h = 1

2 (right) Dark true bounded trigonometric solution and
Euler approximation in lighter colors with increasing errors over time t

cf. Fig. 1.

From Hybrid to Continuous. Using the proof calculus of dL, the problem of prov-
ing properties of hybrid systems reduces completely to proving properties of elementary
continuous systems [9].

Theorem 5.1 (Continuous relative completeness of dL [9, 14]). The dL calculus is a sound
and complete axiomatization of hybrid systems relative to differential equations, i.e., every
valid dL formula can be derived from elementary properties of differential equations.

In particular, if we want to prove properties of hybrid systems, all we need to do is
to prove properties of continuous systems, because the dL calculus completely handles
all other steps in the proofs that deal with discrete or hybrid systems. Of course, one has
to be able to handle continuous systems in order to understand hybrid systems, because
continuous systems are a special case of hybrid systems. But it turns out that this is
actually all that one needs in order to verify hybrid systems, because the dL proof calculus
completely axiomatizes all the rest of hybrid systems.

Since the proof of Theorem 5.1 is constructive, there is even a complete constructive
reduction of properties of hybrid systems to corresponding properties of continuous sys-
tems. The dL calculus can prove hybrid systems properties exactly as good as properties
of the corresponding continuous systems can be verified. One important step in the proof
of Theorem 5.1 shows that all required invariants and variants for repetitions can be ex-

pressed in the logic dL. Furthermore, the dL calculus defines a decision procedure for dL
sentences (i.e., closed formulas) relative to an oracle for differential equations [14].

This result implies that the continuous dynamics dominates the discrete dynamics
since, once the continuous dynamics is handled, all discrete and hybrid dynamics can
be handled as well. Therefore, verification of hybrid systems is not more complex than
the verification of continuous systems. In particular, discrete systems verification is not
more complex than the verification of continuous systems. This is reassuring, because we
get the challenges of discrete dynamics solved for free (by the dL proof calculus) once
we address continuous dynamics. In addition to its theoretical alignment of the landscape
of complexity and reductions, this result emphasizes the importance of studying verifica-
tion techniques for continuous systems, because the dL calculus makes those techniques
hybrid.

From Hybrid to Discrete. In a certain sense, it may appear to be more complicated
to handle continuous dynamics than discrete dynamics. If the continuous dynamics are
not just subsuming discrete dynamics but if they were “inherently more”, then one might
wonder whether hybrid systems verification could be understood with a discrete dynamical
system like a classical computer at all. Of course, such a naïve consideration would be
quite insufficient, because, e.g., properties of objects in uncountable continuous spaces can
very well follow from properties of finitary discrete objects. Finite dL proof objects, for
example, already entail properties about uncountable continuous state spaces of systems.

Fortunately, all such worries about the insufficiency of discrete ways of understanding
continuous phenomena can be settled once and for all by studying the proof-theoretical
relationship between discrete and continuous dynamics. We have shown not only that
the axiomatization of dL is complete relative to differential equations, but that it is also
complete relative discrete systems [14].

Theorem 5.2 (Discrete relative completeness of dL [14]). The dL calculus is a sound and
complete axiomatization of hybrid systems relative to discrete systems, i.e., every valid dL
formula can be derived from elementary properties of discrete systems.

Thus, the dL calculus can also prove properties of hybrid systems exactly as good as
properties of discrete systems can be proved. Again, the proof of Theorem 5.2 is construc-
tive, entailing that there is a constructive way of reducing properties of hybrid systems to
properties of discrete systems using the dL calculus. Furthermore, the dL calculus de-
fines a decision procedure for dL sentences relative to an oracle for discrete systems [14].
Theorems 5.1 and 5.2 lead to a surprising result aligning discrete and continuous systems
properties.

Theorem 5.3 (dL equi-expressibility [14]). The logic dL is expressible in both its discrete
and in its continuous fragment: for each dL formula φ there is a continuous formula φ[that
is equivalent, i.e., � φ↔ φ[and a discrete formula φ# that is equivalent, i.e., � φ↔ φ#.
The converse holds trivially. Furthermore, the construction of φ[and φ# is effective (and
the equivalences are provable in the dL calculus).

The proof of the surprising result Theorem 5.3 is constructive but rather nontrivial
(some 20 pages). It uses a combination of Euler discretizations leading to “proof-uniform”
approximations based on the existence of (not the values of) on-the-fly local Lipschitz
bounds together with topological arguments on semi-algebraic base sets relating sets to
quantified open neighborhoods and logical liftings using the Barcan axiom as well as real
pairings by differential equations and relations between modalities and quantifiers. The
usual challenges of evolution domain constraints are handled based on the “there and back
again” axiom [&]. While several more efficient shortcuts exist, the overall proof is opti-
mized for simplicity of the proof not for efficiency of the result, so it adds unnecessary
complexity. But the proof also identifies cases, in which significantly more efficient re-
ductions are possible, such as in the case of proving closed properties of open invariants.
Whatever the added complexity may be, Theorem 5.3 does have interesting fundamental
consequences.

Consequently, all hybrid questions (and, thus, also all discrete questions) can be formu-
lated constructively equivalently as purely continuous questions and all hybrid questions
(also all continuous questions) can be formulated constructively equivalently as purely
discrete questions. There is a constructive and provable reduction from either side to the
other.

As a corollary to Theorems 5.1 and 5.2, we can proof-theoretically and constructively
equate

hybrid = continuous = discrete

by a complete logical alignment in the sense that proving properties of either of those
classes of dynamical systems is the same as proving properties of any other of those
classes, because all properties of one system can be provably reduced in a complete, con-
structive, and equivalent way to any of the other system classes. Even though each kind
of dynamics comes from fundamentally different principles, they all meet in terms of their
proof problems being interreducible, even constructively; recall Fig. 1. The proof prob-
lem of hybrid systems, the proof problem of continuous systems, and the proof problem
of discrete systems are, thus, equivalent. Any proof technique for one of these classes of
systems completely lifts to proof techniques for the other class of systems.

Since the proof problems interreduce constructively, every technique that is success-
ful for one kind of dynamics lifts to the other kind of dynamics through the dL calculus

in a provably perfect way. Induction, for example, is the primary technique for proving
properties of discrete systems. Hence, by Theorem 5.2, there is a corresponding induction
technique for continuous systems and for hybrid systems. And, indeed, differential invari-
ants [10, 101] are such an induction technique for differential equations that has been used
very successfully for verifying hybrid systems with more advanced differential equations
[12, 111–115]. In fact, differential invariants had already been introduced in 2008 [10]
before Theorem 5.2 was proved [14], but Theorem 5.2 implies that a differential invariant
induction technique has to exist. These results also show that there are sound ways of
using discretization for differential equations [14] and that numerical integration schemes
like, e.g., Euler’s method or more elaborate methods can be used for hybrid systems veri-
fication, which is not at all clear a priori due to inherent numerical approximation errors,
which may blur decisions either way [31].

Some ways of doing practical proof search and generation of invariants has been ad-
dressed in previous work [111, 112]. But many other proof search procedures could be
useful to generate invariants more efficiently in practice. Such advances include, for ex-
ample, techniques using the differential radical invariants extension of differential invari-
ants [116] as well as combinations of differential invariants with Lie invariants [117] using
differential cuts [10, 101]. Differential radical invariants provide a decision procedure for
algebraic invariants of algebraic differential equations and a corresponding automatic in-
variant generation technique based on symbolic linear algebra [116]. Differential cuts,
instead, generalize Gentzen’s cut to differential equations but are fundamental, because
they do not admit differential cut elimination [10, 101].

6 Conclusions and Future Work

This article gave a light-weight overview of analog and hybrid computing models from
a dynamical systems perspective, with a tour of discrete dynamical systems, continuous
dynamical systems, and their common generalization as hybrid (dynamical) systems, cul-
minating in a logic and programming languages view of dynamical systems. The focus
in this article was on an exposition of the basic principles and ideas. Deeper levels of
sophistication are reserved for more in-depth expositions [12–14, 20]. The primary per-
spective here was on identifying and relating some surprising commonalities of discrete
and continuous dynamics using the characterization of hybrid systems in differential dy-
namic logic [9, 12–14]. More consequences of the complete proof theoretical alignment
are discussed in previous work [14]. We also remark that the approach shown in this paper
generalizes to distributed hybrid systems [65], stochastic hybrid systems [76], and hybrid
games [118].

The study of the relations of discrete and continuous systems is not only very exciting
but also results in surprising relations [9, 13, 14, 20, 44, 106–108], bringing up many
interesting questions for future work. We highlight that the complete alignments readily
identify important cases for which the complexity is lower than what the constructive
reductions use [14]. The reason is that the constructive proofs are optimized for simplicity
not efficiency. This raises the question of the inherent complexity of the reductions. What
is the lowest complexity achievable in which case?

Acknowledgments
We thank Gilles Dowek, Nachum Dershowitz, Olivier Bournez, Daniel Graça, and Yuri
Gurevich for helpful feedback on this article.

This material is based upon work supported by the National Science Foundation un-
der NSF CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181, and under
Grant No. CNS-0931985, by DARPA under agreement number FA8750-12-2-0291, by
the Army Research Office under Award No. W911NF-09-1-0273, by University Trans-
portation Center program grant funds from the U.S. Department of Transportation, and by
the German Research Council (DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

References
[1] Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer. Verification of

hybrid systems. In Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith,
editors, Handbook of Model Checking, chapter 28. Springer, 2015.

[2] Anil Nerode and Wolf Kohn. Models for hybrid systems: Automata, topologies,
controllability, observability. In Grossman et al. [119], pages 317–356. ISBN 3-
540-57318-6.

[3] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-
Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The
algorithmic analysis of hybrid systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[4] Michael S. Branicky. General hybrid dynamical systems: Modeling, analysis, and
control. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors,
Hybrid Systems, volume 1066 of LNCS, pages 186–200. Springer, 1995. ISBN
3-540-61155-X.

[5] Thomas A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292,
Los Alamitos, 1996. IEEE Computer Society. doi:10.1109/LICS.1996.561342.

http://dx.doi.org/10.1109/LICS.1996.561342

[6] Michael S. Branicky, Vivek S. Borkar, and Sanjoy K. Mitter. A unified framework
for hybrid control: Model and optimal control theory. IEEE T. Automat. Contr., 43
(1):31–45, 1998.

[7] Jennifer M. Davoren and Anil Nerode. Logics for hybrid systems. IEEE, 88(7):
985–1010, July 2000.

[8] Rajeev Alur, Thomas Henzinger, Gerardo Lafferriere, and George J. Pappas. Dis-
crete abstractions of hybrid systems. Proc. IEEE, 88(7):971–984, 2000.

[9] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41
(2):143–189, 2008. ISSN 0168-7433. doi:10.1007/s10817-008-9103-8.

[10] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput., 20(1):309–352, 2010. ISSN 0955-792X.
doi:10.1093/logcom/exn070.

[11] André Platzer. Differential Dynamic Logics: Automated Theorem Proving for Hy-
brid Systems. PhD thesis, Department of Computing Science, University of Olden-
burg, Dec 2008. Appeared with Springer.

[12] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010. ISBN 978-3-642-14508-7.
doi:10.1007/978-3-642-14509-4.

[13] André Platzer. Logics of dynamical systems. In LICS [120], pages 13–24. ISBN
978-1-4673-2263-8. doi:10.1109/LICS.2012.13.

[14] André Platzer. The complete proof theory of hybrid systems. In LICS [120], pages
541–550. ISBN 978-1-4673-2263-8. doi:10.1109/LICS.2012.64.

[15] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: The next
generation. In IEEE Real-Time Systems Symposium, pages 56–65, 1995.

[16] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. Trans. on Embedded Computing Sys., 6
(1):8, 2007. ISSN 1539-9087.

[17] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for
hybrid systems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, IJCAR, volume 5195 of LNCS, pages 171–178. Springer, 2008. ISBN 978-
3-540-71069-1. doi:10.1007/978-3-540-71070-7_15.

[18] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
SpaceEx: Scalable verification of hybrid systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, CAV, volume 6806 of LNCS, pages 379–395. Springer, 2011.
ISBN 978-3-642-22109-5.

http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1007/978-3-540-71070-7_15

[19] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of LNCS, pages 258–263. Springer, 2013. ISBN 978-3-642-39798-1.
doi:10.1007/978-3-642-39799-8_18.

[20] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788, 2012.
[21] Henri Poincaré. Sur les courbes définies par une équation différentielle. Oeuvres,

1, 1892. Paris.
[22] Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential Equations,

Dynamical Systems, and an Introduction to Chaos. Academic Press, 2 edition,
2003.

[23] Oded Galor. Discrete Dynamical Systems. Springer, 2010.
[24] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT

Press, Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.
[25] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of

Model Checking. MIT Press, 2008. ISBN 978-0262026499.
[26] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of

Sequential and Concurrent Programs. Springer, 3rd edition, 2010.
[27] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real

Computation. Springer, 1998. ISBN 0-387-98281-7.
[28] Marian Boykan Pour-El and Ian Richards. Computability in Analysis and Physics.

Springer, 1989.
[29] Klaus Weihrauch. Computable Analysis. Springer, 2005. ISBN 978-3-540-26179-

7.
[30] Michael O. Rabin and Dana Scott. Finite automata and their decision problems.

IBM Journal of Research and Development, 3(2):114–125, 1959.
[31] André Platzer and Edmund M. Clarke. The image computation problem in hybrid

systems model checking. In Alberto Bemporad, Antonio Bicchi, and Giorgio But-
tazzo, editors, HSCC, volume 4416 of LNCS, pages 473–486. Springer, 2007. ISBN
978-3-540-71492-7. doi:10.1007/978-3-540-71493-4_37.

[32] Lawrence Perko. Differential equations and dynamical systems. Springer, New
York, 3 edition, 2006. ISBN 978-0387951164.

[33] Akitoshi Kawamura and Stephen A. Cook. Complexity theory for operators in
analysis. In Leonard J. Schulman, editor, STOC, pages 495–502. ACM, 2010. ISBN
978-1-4503-0050-6. doi:10.1145/1806689.1806758.

[34] Wolfgang Walter. Ordinary Differential Equations. Springer, 1998. ISBN 978-
0387984599.

[35] Olivier Bournez, Manuel Lameiras Campagnolo, Daniel S. Graça, and Emmanuel
Hainry. Polynomial differential equations compute all real computable functions on
computable compact intervals. Journal of Complexity, 23:317–335, 2007.

http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1007/978-3-540-71493-4_37
http://dx.doi.org/10.1145/1806689.1806758

[36] Claude Elwood Shannon. Mathematical theory of the differential analyzer. J. Math.
Phys., 20:337–354, 1941.

[37] V. Bush. The differential analyzer. a new machine for solving differential equations.
Journal of the Franklin Institute, 212(4):447 – 488, 1931. ISSN 0016-0032.

[38] Daniel Silva Graça and José Félix Costa. Analog computers and recursive functions
over the reals. J. Complexity, 19(5):644–664, 2003.

[39] Cristopher Moore. Recursion theory on the reals and continuous-time computation.
Theor. Comput. Sci., 162(1):23–44, 1996. doi:10.1016/0304-3975(95)00248-0.

[40] Thomas Chadzelek and Günter Hotz. Analytic machines. Theor. Comput. Sci., 219
(1-2):151–167, 1999.

[41] Alexander Moshe Rabinovich. Automata over continuous time. Theor. Comput.
Sci., 300(1-3):331–363, 2003. doi:10.1016/S0304-3975(02)00331-6.

[42] Boris A. Trakhtenbrot. Automata, circuits, and hybrids: Facets of continuous time.
In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, ICALP, volume
2076 of LNCS, pages 4–23. Springer, 2001. ISBN 3-540-42287-0. doi:10.1007/3-
540-48224-5_2.

[43] Otomar Hájek. Discontinuous differential equations, I. Journal of Differen-
tial Equations, 32(2):149 – 170, 1979. ISSN 0022-0396. doi:10.1016/0022-
0396(79)90056-1.

[44] Gilles Dowek. The physical Church–Turing thesis and non-deterministic compu-
tation over the real numbers. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 370(1971):3349–3358, 2012.
doi:10.1098/rsta.2011.0322.

[45] Jean-Pierre Aubin and Arrigo Cellina. Differential Inclusions: Set-Valued Maps
and Viability Theory. Springer, 1984.

[46] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid,
distributed, and now formally verified. In Michael Butler and Wolfram Schulte,
editors, FM, volume 6664 of LNCS, pages 42–56. Springer, 2011. ISBN 978-3-
642-21436-3. doi:10.1007/978-3-642-21437-0_6.

[47] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid dynamical sys-
tems. IEEE Control Systems Magazine, 29(2):28–93, 2009.

[48] Rod Cross. The coefficient of restitution for collisions of happy balls, unhappy balls,
and tennis balls. Am. J. Phys., 68(11):1025–1031, 2000. doi:10.1119/1.1285945.

[49] André Platzer. A complete axiomatization of differential game logic for hy-
brid games. Technical Report CMU-CS-13-100R, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, January, Revised and extended in July
2013.

http://dx.doi.org/10.1016/0304-3975(95)00248-0
http://dx.doi.org/10.1016/S0304-3975(02)00331-6
http://dx.doi.org/10.1007/3-540-48224-5_2
http://dx.doi.org/10.1007/3-540-48224-5_2
http://dx.doi.org/10.1016/0022-0396(79)90056-1
http://dx.doi.org/10.1016/0022-0396(79)90056-1
http://dx.doi.org/10.1098/rsta.2011.0322
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1119/1.1285945

[50] Anil Nerode and Wolf Kohn. Models for hybrid systems: Automata, topologies,
controllability, observability. In Hybrid Systems, pages 317–356, London, UK, UK,
1993. Springer-Verlag. ISBN 3-540-57318-6.

[51] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid
automata: An algorithmic approach to the specification and verification of hybrid
systems. In Grossman et al. [119], pages 209–229. ISBN 3-540-57318-6.

[52] Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An approach
to the description and analysis of hybrid systems. In Grossman et al. [119], pages
149–178. ISBN 3-540-57318-6. doi:10.1007/3-540-57318-6_28.

[53] Lucio Tavernini. Differential automata and their discrete simulators. Non-Linear
Anal., 11(6):665–683, 1987. ISSN 0362-546X.

[54] Jan A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems. Theor.
Comput. Sci., 335(2-3):215–280, 2005.

[55] D. A. van Beek, Ka L. Man, Michel A. Reniers, J. E. Rooda, and Ramon R. H.
Schiffelers. Syntax and consistent equation semantics of hybrid Chi. J. Log. Algebr.
Program., 68(1-2):129–210, 2006.

[56] René David and Hassane Alla. On hybrid petri nets. Discrete Event Dynamic
Systems, 11(1-2):9–40, 2001. doi:10.1023/A:1008330914786.

[57] Franck Cassez and Kim Guldstrand Larsen. The impressive power of stopwatches.
In CONCUR, pages 138–152, 2000.

[58] Goran Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech.
STTT, 10(3):263–279, 2008.

[59] Akash Deshpande, Aleks Göllü, and Pravin Varaiya. SHIFT: A formalism and a
programming language for dynamic networks of hybrid automata. In Antsaklis
et al. [121], pages 113–133. ISBN 3-540-63358-8.

[60] William C. Rounds. A spatial logic for the hybrid π-calculus. In Rajeev Alur and
George J. Pappas, editors, HSCC, volume 2993 of LNCS, pages 508–522. Springer,
2004. ISBN 3-540-21259-0. doi:10.1007/978-3-540-24743-2_34.

[61] Fabian Kratz, Oleg Sokolsky, George J. Pappas, and Insup Lee. R-Charon, a mod-
eling language for reconfigurable hybrid systems. In Hespanha and Tiwari [122],
pages 392–406. ISBN 3-540-33170-0.

[62] José Meseguer and Raman Sharykin. Specification and analysis of distributed
object-based stochastic hybrid systems. In Hespanha and Tiwari [122], pages 460–
475. ISBN 3-540-33170-0.

[63] Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-stabilizing robot
formations over unreliable networks. ACM Trans. Auton. Adapt. Syst., 4(3):1–29,
2009. ISSN 1556-4665.

http://dx.doi.org/10.1007/3-540-57318-6_28
http://dx.doi.org/10.1023/A:1008330914786
http://dx.doi.org/10.1007/978-3-540-24743-2_34

[64] André Platzer. Quantified differential dynamic logic for distributed hybrid systems.
In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of LNCS, pages 469–
483. Springer, 2010. ISBN 978-3-642-15204-7. doi:10.1007/978-3-642-15205-
4_36.

[65] André Platzer. A complete axiomatization of quantified differential dynamic logic
for distributed hybrid systems. Logical Methods in Computer Science, 8(4):1–44,
2012. doi:10.2168/LMCS-8(4:17)2012. Special issue for selected papers from
CSL’10.

[66] Taylor T. Johnson and Sayan Mitra. A small model theorem for rectangular hybrid
automata networks. In Holger Giese and Grigore Rosu, editors, FORTE/FMOODS,
LNCS. Springer, 2012. To appear.

[67] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[68] Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: A formal

model for dynamic systems. In Kim Guldstrand Larsen and Mogens Nielsen, ed-
itors, CONCUR, volume 2154 of LNCS, pages 137–151. Springer, 2001. ISBN
3-540-42497-0.

[69] Mark H. A. Davis. Piecewise-deterministic Markov processes: A general class of
non-diffusion stochastic models. Journal of the Royal Statistical Society. Series B,
46(3):358–388, 1984.

[70] Mrinal K. Ghosh, Aristotle Arapostathis, and Steven I. Marcus. Ergodic control
of switching diffusions. SIAM J. Control Optim., 35(6):1952–1988, 1997. ISSN
0363-0129.

[71] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic
hybrid systems. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC, volume
1790 of LNCS, pages 160–173. Springer, 2000. ISBN 3-540-67259-1.

[72] Manuela L. Bujorianu and John Lygeros. Towards a general theory of stochastic
hybrid systems. In Henk A. P. Blom and John Lygeros, editors, Stochastic Hybrid
Systems: Theory and Safety Critical Applications, volume 337 of Lecture Notes
Contr. Inf., pages 3–30. Springer, 2006.

[73] Christos G. Cassandras and John Lygeros, editors. Stochastic Hybrid Systems. CRC,
2006. ISBN 978-0849390838.

[74] Xenofon D. Koutsoukos and Derek Riley. Computational methods for verification
of stochastic hybrid systems. IEEE T. Syst. Man, Cy. A, 38(2):385–396, 2008.

[75] Martin Fränzle, Tino Teige, and Andreas Eggers. Engineering constraint solvers for
automatic analysis of probabilistic hybrid automata. J. Log. Algebr. Program., 79
(7):436–466, 2010.

http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.2168/LMCS-8(4:17)2012

[76] André Platzer. Stochastic differential dynamic logic for stochastic hybrid pro-
grams. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE, vol-
ume 6803 of LNCS, pages 431–445. Springer, 2011. ISBN 978-3-642-22437-9.
doi:10.1007/978-3-642-22438-6_34.

[77] Ioannis Karatzas and Steven Shreve. Brownian Motion and Stochastic Calculus.
Graduate Texts in Mathematics. Springer, 1991. ISBN 978-0387976556.

[78] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applica-
tions. Springer, 2007. ISBN 978-3540047582.

[79] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential
Equations. Springer, New York, 2010. ISBN 978-3642081071.

[80] Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. Hybrid system games:
Extraction of control automata with small topologies. In Antsaklis et al. [121],
pages 248–293. ISBN 3-540-63358-8. doi:10.1007/BFb0031565.

[81] Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution for air traf-
fic management: a study in multi-agent hybrid systems. IEEE T. Automat. Contr.,
43(4):509–521, 1998.

[82] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rectangular hy-
brid games. In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR, volume 1664
of LNCS, pages 320–335. Springer, 1999. ISBN 3-540-66425-4. doi:10.1007/3-
540-48320-9_23.

[83] Claire J. Tomlin, John Lygeros, and Shankar Sastry. A game theoretic approach to
controller design for hybrid systems. Proc. IEEE, 88(7):949–970, 2000.

[84] S. Dharmatti and M. Ramaswamy. Zero-sum differential games involving hybrid
controls. Journal of Optimization Theory and Applications, 128(1):75–102, 2006.
ISSN 0022-3239. doi:10.1007/s10957-005-7558-x.

[85] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. O-minimal hybrid reach-
ability games. Logical Methods in Computer Science, 6(1), 2010.

[86] Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan, and Geir E.
Dullerud. Specifications for decidable hybrid games. Theor. Comput. Sci., 412(48):
6770–6785, 2011. doi:10.1016/j.tcs.2011.08.036.

[87] Jan-David Quesel and André Platzer. Playing hybrid games with KeYmaera.
In Bernhard Gramlich, Dale Miller, and Ulrike Sattler, editors, IJCAR, vol-
ume 7364 of LNCS, pages 439–453. Springer, 2012. ISBN 978-3-642-31364-6.
doi:10.1007/978-3-642-31365-3_34.

[88] André Platzer. Differential dynamic logic for verifying parametric hybrid systems.
In Nicola Olivetti, editor, TABLEAUX, volume 4548 of LNCS, pages 216–232.
Springer, 2007. ISBN 978-3-540-73098-9. doi:10.1007/978-3-540-73099-6_17.

[89] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):
427–443, 1997.

http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.1007/BFb0031565
http://dx.doi.org/10.1007/3-540-48320-9_23
http://dx.doi.org/10.1007/3-540-48320-9_23
http://dx.doi.org/10.1007/s10957-005-7558-x
http://dx.doi.org/10.1016/j.tcs.2011.08.036
http://dx.doi.org/10.1007/978-3-642-31365-3_34
http://dx.doi.org/10.1007/978-3-540-73099-6_17

[90] Ken Thompson. Regular expression search algorithm. Commun. ACM, 11(6):419–
422, 1968. doi:10.1145/363347.363387.

[91] André Platzer. A temporal dynamic logic for verifying hybrid system invariants.
In Sergei N. Artëmov and Anil Nerode, editors, LFCS, volume 4514 of LNCS,
pages 457–471. Springer, 2007. ISBN 978-3-540-72732-3. doi:10.1007/978-3-
540-72734-7_32.

[92] Konstantin Sergeevich Sibirsky. Introduction to Topological Dynamics. Noordhoff,
Leyden, 1975.

[93] Michael S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Con-
trol. PhD thesis, Dept. Elec. Eng. and Computer Sci., Massachusetts Inst. Technol.,
Cambridge, MA, 1995.

[94] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In FOCS, pages
109–121. IEEE, 1976.

[95] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT Press, 2000.
[96] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Univer-

sity of California Press, Berkeley, 2nd edition, 1951.
[97] Rudolf Carnap. Modalities and quantification. J. Symb. Log., 11(2):33–64, 1946.
[98] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,

1996. ISBN 978-0415125994.
[99] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,

Mathematical Aspects of Computer Science, Proceedings of Symposia in Applied
Mathematics, volume 19, pages 19–32, Providence, 1967. AMS.

[100] Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[101] André Platzer. The structure of differential invariants and differential cut elimina-
tion. Logical Methods in Computer Science, 8(4):1–38, 2012. ISSN 1860-5974.
doi:10.2168/LMCS-8(4:16)2012.

[102] André Platzer. A differential operator approach to equational differential invariants.
In Lennart Beringer and Amy Felty, editors, ITP, volume 7406 of LNCS, pages 28–
48. Springer, 2012. ISBN 978-3-642-32346-1. doi:10.1007/978-3-642-32347-8_3.

[103] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In J. W.
de Bakker, Cornelis Huizing, Willem P. de Roever, and Grzegorz Rozenberg, edi-
tors, REX Workshop, volume 600 of LNCS, pages 447–484. Springer, 1991. ISBN
3-540-55564-1. doi:10.1007/BFb0032003.

[104] Anil Nerode. Logic and control. In S. Barry Cooper, Benedikt Löwe, and Andrea
Sorbi, editors, CiE, volume 4497 of LNCS, pages 585–597. Springer, 2007. ISBN
978-3-540-73000-2.

[105] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Mon. hefte Math. Phys., 38:173–198, 1931.

http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1007/978-3-540-72734-7_32
http://dx.doi.org/10.1007/978-3-540-72734-7_32
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.1007/978-3-642-32347-8_3
http://dx.doi.org/10.1007/BFb0032003

[106] Cristopher Moore. Unpredictability and undecidability in dynamical systems. Phys.
Rev. Lett., 64:2354–2357, May 1990. doi:10.1103/PhysRevLett.64.2354.

[107] Michael S. Branicky. Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theor. Comput. Sci., 138(1):67–100, 1995.

[108] Daniel Silva Graça, Manuel L. Campagnolo, and Jorge Buescu. Computability with
polynomial differential equations. Advances in Applied Mathematics, 2007.

[109] Pieter Collins and Daniel S. Graça. Effective computability of solutions of differ-
ential inclusions the ten thousand monkeys approach. J. UCS, 15(6):1162–1185,
2009. doi:10.3217/jucs-015-06-1162.

[110] André Platzer. Logical analysis of hybrid systems: A complete answer to a com-
plexity challenge. Journal of Automata, Languages and Combinatorics, 17(2-4):
265–275, 2012.

[111] André Platzer and Edmund M. Clarke. Computing differential invariants of hy-
brid systems as fixedpoints. In Aarti Gupta and Sharad Malik, editors, CAV, vol-
ume 5123 of LNCS, pages 176–189. Springer, 2008. ISBN 978-3-540-70543-7.
doi:10.1007/978-3-540-70545-1_17.

[112] André Platzer and Edmund M. Clarke. Computing differential invariants of hy-
brid systems as fixedpoints. Form. Methods Syst. Des., 35(1):98–120, 2009. ISSN
0925-9856. doi:10.1007/s10703-009-0079-8. Special issue for selected papers from
CAV’08.

[113] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision
avoidance maneuvers: A case study. In Ana Cavalcanti and Dennis Dams, editors,
FM, volume 5850 of LNCS, pages 547–562. Springer, 2009. ISBN 978-3-642-
05088-6. doi:10.1007/978-3-642-05089-3_35.

[114] André Platzer and Jan-David Quesel. European Train Control System: A case study
in formal verification. In Karin Breitman and Ana Cavalcanti, editors, ICFEM,
volume 5885 of LNCS, pages 246–265. Springer, 2009. ISBN 978-3-642-10372-8.
doi:10.1007/978-3-642-10373-5_13.

[115] Stefan Mitsch, Khalil Ghorbal, and André Platzer. On provably safe obstacle avoid-
ance for autonomous robotic ground vehicles. In Paul Newman, Dieter Fox, and
David Hsu, editors, Robotics: Science and Systems, 2013. ISBN 978-981-07-3937-
9.

[116] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by differ-
ential radical invariants. In Erika Ábrahám and Klaus Havelund, editors, TACAS,
volume 8413 of LNCS, pages 279–294. Springer, 2014. ISBN 978-3-642-54861-1.
doi:10.1007/978-3-642-54862-8_19.

http://dx.doi.org/10.1103/PhysRevLett.64.2354
http://dx.doi.org/10.3217/jucs-015-06-1162
http://dx.doi.org/10.1007/978-3-540-70545-1_17
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1007/978-3-642-54862-8_19

[117] Khalil Ghorbal, Andrew Sogokon, and André Platzer. Invariance of conjunctions of
polynomial equalities for algebraic differential equations. In Markus Müller-Olm
and Helmut Seidl, editors, SAS, volume 8723 of LNCS, pages 151–167. Springer,
2014. ISBN 978-3-319-10935-0. doi:10.1007/978-3-319-10936-7_10.

[118] André Platzer. Differential game logic. CoRR, abs/1408.1980, 2014.
[119] Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors. Hy-

brid Systems, volume 736 of LNCS, 1993. Springer. ISBN 3-540-57318-6.
[120] LICS. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Com-

puter Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012, 2012. IEEE.
ISBN 978-1-4673-2263-8.

[121] Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, editors. Hybrid
Systems IV, volume 1273 of LNCS, 1997. Springer. ISBN 3-540-63358-8.

[122] João P. Hespanha and Ashish Tiwari, editors. Hybrid Systems: Computation and
Control, 9th International Workshop, HSCC 2006, Santa Barbara, CA, USA, March
29-31, 2006, Proceedings, volume 3927 of LNCS, 2006. Springer. ISBN 3-540-
33170-0.

http://dx.doi.org/10.1007/978-3-319-10936-7_10

	Introduction
	Dynamical Systems
	General Dynamical Systems
	Discrete Dynamical Systems
	Continuous Dynamical Systems
	Hybrid Systems

	Models of Computation: Hybrid Programs
	Logical Characterizations of Hybrid Systems
	Hybrid Relations between Discrete and Continuous Dynamical Systems
	Conclusions and Future Work

