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Abstract

Keeping replicated data strongly consistent is convenient when com-
munication is fast and available. In internet-scale distributed systems the
reality of high communication latencies and likelihood of partitions, leads
developers to adopt more relaxed consistency models, such as eventual con-
sistency. Conflict-free Replicated Data Types, bring structure to the design
of eventually consistent data management solutions, by precisely describing
the behaviour under concurrent updates and guarantying a path to reconcili-
ation. This paper offers a survey of the mathematical structures that support
state based multi-master replication with reconciliation, and shows how state
structures and state transformations can be composed to provide data types
that are now used in practice in many geo-replicated systems.

1 Introduction
Eventual consistency [25] is a relaxed, and highly available, data consistency
model that is often the option of choice in internet-scale distributed systems. The
common reasoning is that availability must be maintained, despite outages and
partitioning, whereas delayed consistency is acceptable. Replicated data can be
independently updated by multiple masters, allowing replicas to temporarily di-
verge [15], provided that they can eventually be reconciled into a common state.
The notion of attaining eventual consistency when updates stop can be traced to
R. H. Thomas in [23] “By mutual consistency we mean that all copies converge
to the same state and would be identical should update activity cease”.



Reconciliation of divergent data has been studied for many years, with strong
roots in databases [22, 23] and distributed file-systems [17, 18], often motivated
by support of disconnected operation. However, reconciliation algorithms used
to be ad-hoc and had to be devised by application layer programmers, typically
lacking a sound basis that ensured their correctness and convergence properties.
Alternatively, reconciliation can be left to the user, as in version control systems,
thus any outcome is possible and reconciliation becomes non deterministic.

Conflict-free Replicated Data Types (CRDTs) [21] are motivated by modern
demands from internet-scale systems [3, 14, 16, 24]. Within those systems, they
currently serve millions of users world-wide, and bring a more grounded approach
to the design of efficient and deterministic reconciliation solutions. They preserve
the sequential semantics of the modeled data types, and present a choice among
deterministic options when addressing concurrent changes. For instance, when
facing concurrent insertion and removal of the same element in a set, different set
concurrency semantics can lead to Add-wins or Remove-wins CRDT Sets. While
the choice of best CRDT data type implementation is still left to the application
designer, each data type is still assured to be correct with respect to its sequential
and specific concurrent semantics.

CRDTs support two complementary designs: operation-based and state-based.
Operation-based CRDTs require a middleware that provides reliable causal deliv-
ery to a known group of replicas, while state-based CRDTs usually only require
access to globally unique identifiers and eschew membership information. Due to
their additional flexibility, state-based CRDTs have a larger ratio of adoption in
industry, and will be the focus of this study.

State-based CRDTs are rooted in the mathematical structure known as join-
semilattices (which in this document we will abbreviate to simply lattices). These
order structures ensure that: 1) the replicated states of the data types evolve and
increase in a partial order in a precise way, as operations are applied, so that
the new version subsumes the previous one; 2) all concurrent evolutions can be
merged deterministically by the lattice join. In order to understand the building
principles of state-based CRDTs it is necessary to understand the basic building
blocks of lattices and how lattices can be composed.

In the following sections we will make a bridge linking classic results from
order and lattice theory into state-based CRDT construction techniques. We will
show how state evolves within a lattice; present several examples of concrete
CRDTs; and when possible link them to concrete use cases. We envision two
main readership goals: to provide a compact reference of constructions for the
benefit of data type developers, and to possibly entice theoreticians to consider a
new subject area for practical application of lattice theory.



2 From Sets to Lattices
In this context the most basic structure to define is a set of distinct values. An ex-
ample is the set of vowels that can defined by extension as vowels � {a, e, i, o, u}.
Elements in a set have no specific order and they only need to be distinguishable.

A partially ordered set, usually known as poset, is a set equipped with a binary
relation v which is reflexive, transitive and anti-symmetric. Given any elements
o, p, q in a poset we have:

• (reflexive) p v p

• (transitive) o v p ∧ p v q⇒ o v q

• (anti-symmetric) p v q ∧ q v p⇒ p = q

As an example, we can build a poset over the set of vowels by ordering just
two elements a v u, while the remaining elements are left unordered. These
unordered elements are called concurrent.

• (concurrent) p ‖ q ⇐⇒ ¬(p v q ∨ q v p)

In one extreme, we can build a poset with a total order on the set of vowels
with a v e v i v o v u. In this example we ordered all elements and thus created
a chain, i.e. a set where for any two elements p, q we have either p v q or q v p.

In the other extreme, we can leave all elements unordered and define a poset
that is an antichain, where any two elements are always concurrent. E.g., for the
vowels, defining v � {(a, a), (e, e), (i, i), (o, o), (u, u)}.

Throughout the paper we will use simple typing rules to clarify how some
structures can be obtained from others (by composition or simply by shedding
some properties). For example, every poset is obviously also a set:

A : poset
A : set

Given a poset A and a subset S of A, an upper bound of S is an element of A
that is greater than or equal to all elements of S . The least upper bound, if it exists,
is an upper bound that is less than any other upper bound, and therefore, unique.
Going back to the chain defined over the set of vowels (a v e v i v o v u),
considering the subset {a, i}, elements i, o, u are all upper bounds of the subset,
while i is the least upper bound.

A given poset A is a lattice if there exists a least upper bound for any pair
of elements p and q in A, written p t q, being t called the join operator. By
definition, this binary join satisfies the following properties:



• (idempotent) p t p = p

• (commutative) p t q = q t p

• (associative) o t (p t q) = (o t p) t q

We can generalise it to express the least upper bound of any non-empty finite
set S in a lattice A as

⊔
S . Some properties of least upper bounds are:

• (upper bound) o v o t p

• (least upper bound) o v p ∧ o v q⇒ o v p t q

There are posets where the join does not exist for all pairs of different ele-
ments; these are not lattices. For instance, an antichain is not a lattice, as the join
of any pair of different elements does not exist. Another example is bit strings
under prefix ordering (e.g., 01 v 010) where concurrent elements, e.g., 010 ‖ 100,
are not joinable.

However, having a set and any idempotent, commutative and associative bi-
nary operation, which can be called a join, we have a lattice, with the order in-
duced by the join as p v q ⇐⇒ p t q = q.

A : lattice
A : poset

When implementing CRDTs, where all possible states must have a join, this
can allow skipping the direct implementation of v and deriving it from t. How-
ever, for performance reasons, it might still be advisable to directly implement v
when appropriate.

As will be presented in Section 4.5, a lattice can be obtained from any set A,
by using the powerset P(A) as the supporting set and choosing the order to be set
inclusion, which results in the join being set union. In our running example this
would be the lattice defined by 〈P(vowels),⊆,∪〉.

As another general rule, any totally ordered set, i.e., any chain, is a lattice,
with the join being the maximum.

A : chain
A : lattice

For natural numbers we have the lattice 〈N,≤N,max〉. These simple lattices,
and others, can be found as building blocks for the BloomL system [7], a language
supporting eventual consistency without coordination.

Some lattices have a least element, called the bottom element ⊥. In these
cases the least upper bound for the empty set

⊔
∅ exists, and it is precisely ⊥.

Some properties are:



• (bottom) ⊥ v o

• (identity) ⊥ t o = o

Some examples: the lattice formed by the powerset of a given set A has the
empty set as bottom, 〈P(A),⊆,∪, ∅〉, and natural numbers have 0 as bottom. For
those lattices that do not have a bottom, it is always possible to add an extra
element as bottom, ordered before all others, obtaining a lattice with bottom. We
will address this construction when talking about lattice composition by linear
sums in Section 4.3. Trivially, lattices with bottom are lattices.

A : lattice⊥
A : lattice

A : chain⊥
A : chain

2.1 Primitive Lattices

We now introduce a small set of lattices, that will be later useful to construct more
complex structures by composition.

Singleton A single element, ⊥.

1 : chain⊥

⊥ v ⊥ ⊥ t ⊥ = ⊥

Boolean Two elements B = {False,True} in a chain, where join is logical ∨.

B : chain⊥

False v True x t y = x ∨ y ⊥ = False

Naturals Natural numbers with maximum as join. We include the 0, thus N =

{0, 1, . . .}.

N : chain⊥

n v m = n ≤ m n t m = max(n,m) ⊥ = 0



Integers Integers with maximum as join.

Z : chain

n v m = n ≤ m n t m = max(n,m)

3 Inflations make CRDTs
State-based CRDTs can be specified by selecting a given lattice to model the state,
and choosing the initial state usually as the lattice ⊥, if there is one. Query op-
erations evaluate an arbitrary function on the state and return a value. Mutation
operations do not return values and can only change the state by inflations. An
inflation f is an endofunction over A that for any value x in A returns an element
greater than or equal to x:

• (inflation) x v f (x)

It should be noticed that an inflation is not the same as a monotonic function,
x v y ⇒ f (x) v f (y). (We have noticed this confusion sometimes.) As an
example, the function f (x) = x

2 on positive reals is monotonic but not an inflation.
Inflations can be further classified as non-strict and strict inflations, where a strict
inflation is one such that:

• (strict inflation) x @ f (x)

The rules concerning inflations are thus:

∀x ∈ a · x v f (x)

f : A
v
−→ A

∀x ∈ a · x @ f (x)

f : A
@
−→ A

f : A
@
−→ A

f : A
v
−→ A

A state that is only updated as a result of inflations over its current value will
not be modified if joined with some past state: the new state always subsumes
the older one. This has important practical implications: state can be transmitted



at-least-once across replicas, since duplicates have no impact. If an old dupli-
cate arrives at a replica, even out of order with more recent states, joining it with
the local state will be harmless (a no-op), as its effect will have already been in-
corporated, and there is no danger of ‘going backwards’ and losing more recent
information.

3.1 Primitive Inflations

Similarly to the primitive lattices introduced above we can define some primitive
inflations.

id(x) = x
id : A

v
−→ A

True(x) = True
True : B

v
−→ B

succ(x) = x + 1
succ : N

@
−→ N

3.2 Sequential Composition

Inflations can be composed sequentially. As long as there is at least one strict
inflation in the composition, we obtain a strict inflation.

( f • g)(x) = f (g(x))

f : A
v
−→ A g : A

v
−→ A

f • g : A
v
−→ A

f : A
v
−→ A g : A

@
−→ A

f • g : A
@
−→ A

f : A
@
−→ A g : A

v
−→ A

f • g : A
@
−→ A

4 Lattice Compositions

Since we are interested in creating lattices we consider a few composition tech-
niques that are known to derive lattices. While in some cases they build from other
lattices, in others they can derive lattices from simpler structures.



4.1 Product

The product ×, or pair construction, derives a lattice formed by pairs of other
lattices. It can be applied recursively and derive a composition from a sequence
of lattices, where operations are applied in point-wise order.

A : lattice B : lattice
A × B : lattice

(x1, y1) v (x2, y2) = x1 v x2 ∧ y1 v y2

(x1, y1) t (x2, y2) = (x1 t x2, y1 t y2)

The construction also extends to lattices with bottom.

A : lattice⊥ B : lattice⊥
A × B : lattice⊥

⊥ = (⊥,⊥)

As an example, the underlying lattice structure of a version vector [15] among
three replica nodes is composable by N ×N ×N with ⊥ = (0, 0, 0).

Bellow are the properties of inflations over products. A strict inflation on one
of the components leads to an overall strict inflation.

( f × g)(x, y) = ( f (x), g(y))

f : A
v
−→ A g : B

v
−→ B

f × g : A × B
v
−→ A × B

f : A
v
−→ A g : B

@
−→ B

f × g : A × B
@
−→ A × B

f : A
@
−→ A g : B

v
−→ B

f × g : A × B
@
−→ A × B

Classic causality based event ordering mechanisms can be described by lat-
tices that evolve by strict inflations. Lamport scalar logical clocks [13] are de-
scribed by the N lattice where each event number is generated locally by strict
inflation, and received remote clocks are merged-in by join. Similarly, vector
clocks share the same structure as version vectors, a product composition of N
lattices, with local events generated by strict inflation of the local entry.



4.2 Lexicographic Product
The � construct builds a lexicographic order from its source lattices. Components
to the left are more significant and, unless they are equal, they filter out further
comparisons towards the right side.

A : lattice B : lattice⊥
A � B : lattice

A : lattice⊥ B : lattice⊥
A � B : lattice⊥

(x1, y1) v (x2, y2) = x1 v x2 ∨ (x1 = x2 ∧ y1 v y2)

(x1, y1) t (x2, y2) =


(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2,⊥) if x1 ‖ x2

⊥ = (⊥,⊥)

If the left component is a chain, often the case in practical uses based on
timestamps or scalar logical clocks, then the right one can be any lattice (without
requiring ⊥) as the fourth clause of the join definition never applies.

A : chain B : lattice
A � B : lattice

And, if the right component is also a chain the composition is a chain.

A : chain B : chain
A � B : chain

Some properties of inflations on lexicographic products are:

( f � g)(x, y) = ( f (x), g(y))

f : A
v
−→ A g : B

v
−→ B

f � g : A � B
v
−→ A � B

f : A
v
−→ A g : B

@
−→ B

f � g : A � B
@
−→ A � B

f : A
@
−→ A g : B −→ B

f � g : A � B
@
−→ A � B

Notice that if we apply a strict inflation to the left component, then the right
component can be transformed by any function even if non inflationary. In prac-
tice this allows resetting the right component after strictly inflating the left; we
will see this in Section 5.2 when building lexicographic counters.



The abstraction provided by the lexicographic product is at the core of many
practical systems that use last-writer-wins approaches to manage concurrent data
updates [11]. By using fine grained timestamps in the left side and keeping node
clocks as closely synchronized as possible across system nodes, one can expect
strict inflations on the left as timestamps increase with time. When merging,
higher timestamp values will determine the outcome of the join.

4.3 Linear Sum
The next composition, linear sum ⊕, picks two lattices, left and right, and creates
a new lattice where any element from the left lattice is always ordered as less than
any element in the right lattice. In the resulting set the elements are tagged with a
label that identifies from which source lattice they come from. i.e., Left a means
that element a comes from the left lattice and is now named Left a. Tagging also
ensures that the sets supporting each lattice can have elements in common.

A : lattice B : lattice
A ⊕ B : lattice

A : lattice⊥ B : lattice
A ⊕ B : lattice⊥

Left x v Left y = x v y Left x t Left y = Left (x t y)
Right x v Right y = x v y Right x t Right y = Right (x t y)
Left x v Right y = True Left x t Right y = Right y
Right x v Left y = False Right x t Left y = Right x

⊥ = Left ⊥

A possible use of this construction is to add a ⊥ to a lattice that did not had
one. For instance 1 ⊕ R can add a special element, e.g. nil, that is ordered as
less than any real number. The same construction can also be used to add a top
element > to a lattice, that can act as a tombstone that stops lattice evolution.

Some properties of inflations on sums are:

( f ⊕ g)(Left x) = Left f (x)
( f ⊕ g)(Right x) = Right g(x)

f : A
v
−→ A g : B

v
−→ B

f ⊕ g : A ⊕ B
v
−→ A ⊕ B

f : A
@
−→ A g : B

@
−→ B

f ⊕ g : A ⊕ B
@
−→ A ⊕ B



4.4 Functions and Maps
The function space A→ B is a lattice, obtained by combining a set A with a lattice
B, and using pointwise comparison and join.

A : set B : lattice
A→ B : lattice

A : set B : lattice⊥
A→ B : lattice⊥

f v g = ∀x ∈ A · f (x) v g(x) ( f t g)(x) = f (x) t g(x)

⊥(x) = ⊥

Many CRDTs are based on partial functions, i.e., maps K ↪→ V , where K is
any set of keys, and V is any lattice with bottom. Such maps are sometimes used
to (efficiently) represent total functions, assuming that keys which are not present
in the map implicitly yield bottom.

m(k) =

v if (k, v) ∈ m
⊥ otherwise

This view of maps as functions also allows us to reuse the respective definition
for join.

K : set V : lattice⊥
K ↪→ V : lattice⊥

An example of a map from vowels to integers vowels ↪→ N is m = {a 7→

3, i 7→ 5}. Viewing this map as function we could query for m(u) which yields 0.
We now define some inflations over maps. The first applies an inflation to all

values in the co-domain and thus inflates the whole map.

map( f )(m) = {(k, f (v)) | (k, v) ∈ m}

f : V
v
−→ V

map( f ) : (K ↪→ V)
v
−→ (K ↪→ V)

The second applies an inflation to the value for a given key.

applyk( f )(m) = m{k 7→ f (m(k))}

Note that if the key is missing the function is applied to ⊥.

f : V
v
−→ V

applyk( f ) : (K ↪→ V)
v
−→ (K ↪→ V)



Having maps we can refine the modeling of fixed size vector clocks that was
based on products of N. A dynamic vector clock can be obtained by mapping
node identifiers to N lattices, as described in [7].

4.5 Sets and Multisets
As we have seen in Section 2, given any set A it is possible to derive a lattice with
bottom by using the set of all possible subsets, the powerset P(A).

The powerset can also be defined by a function that maps each set element to
a boolean that states its presence in the subset. This composition is very general
since it can produce a lattice with bottom from any set.

P(A) � A→ B

Given that B is a lattice with bottom, from the previous section we know that
function A → B is also a lattice with bottom. Moreover, the respective order
relation and join operator are obtained by construction and are equivalent to the
expected.

A : set
P(A) : lattice⊥

a v b = a ⊆ b a t b = a ∪ b ⊥ = {}

A natural extension is to represent multisets by mapping the domain set to
naturals, instead of booleans.

A : set
Pm(A) : lattice⊥

Pm(A) � A→ N

Once again, by the properties of lattice composition, we get that function space
A → N is a lattice with bottom and both the order relation and join operator are
provided by construction.

Given that both B and N are lattices with bottom, actual CRDTs for sets and
multisets use maps to represent functions, as discussed in the previous section.
The generic inflations defined for maps can be used here to define an inflation that
adds an element e to a given set s.

add(e)(s) = applye(True)(s)

Likewise, to add an element to a multiset one increments the element count,
having a strict inflation.



add(e)(s) = applye(succ)(s)

4.6 Maximal Elements
A down-set (or order ideal) D of a poset P, is downward closed set, according to
v, of elements in P; i.e., if x ∈ D and y v x, then y ∈ D. Down-sets are useful
in many situations, e.g., to represent causal histories [19] of all events in the past,
up to a given point. Down-sets are also closed under set union, which means that
the set of down-sets D(A) of a poset A is a lattice with bottom (similarly to the
powerset for sets), with the usual set inclusion for order and union for join.

A : poset
D(A) : lattice⊥

But as they tend to get very large, they are used more as a modelling device,
than as an actual construct in implementations. However, a down-set can be more
compactly represented by the set of its maximal elements, which is an antichain.

maximal(S ) = {x ∈ S | @y ∈ S · x @ y}

This means that, starting from a poset A, we can obtain a lattice with bottom,
isomorphic toD(A), which we callM(A): the lattice of maximal elements.

M(A) = {maximal(S ) | S ∈ P(A)}

A : poset
M(A) : lattice⊥

M(A) � D(A)

The definitions of join and the order come directly from the isomorphism.
Upon a join, given two antichains, all elements that are concurrent are kept, but
any element that is subsumed by a greater element is removed.

a t b = maximal(a ∪ b)

a v b = ∀x ∈ a · ∃y ∈ b · x v y

⊥ = {}

In [7] a similar structure, using vector clocks to capture poset ordering, is
described as a ldom lattice and referred to as a dominating set.



{ }

{i1 ↦1}

i1 i2

inc {i2 ↦1}

{i1 ↦2}
{i1 ↦2, i2 ↦1}

{i1 ↦2, i2 ↦2}
{i1 ↦3}

inc

{i1 ↦2, i2 ↦3}

{i1 ↦4}

inc

{ }

inc
inc

inc

inc

{i1 ↦4, i2 ↦3}

(a) Positive counter.

{ }

{i1 ↦(1,False)}

i1 i2

disable
{ }

enable
{ }

{i1 ↦(1,False)}
disable {i1 ↦(1,True)}

{i1 ↦(1,True)}
enable {i1 ↦(1,True),

  i2 ↦(1,False)}
enable{i1 ↦(2,False)}

{i1 ↦(2,False),
  i2 ↦(1,False)}

(b) Enable-wins flag.

{ }
assign4

{ }

{({i1↦1},3),
  ({i2↦2},2)}

{({i2↦1},4)}
assign2 {({i2↦2},2)}

{({i1↦1},3)} assign3

assign5 {({i1↦1,i2↦3},5)}

{({i1↦1,i2↦3},5)}
assign7{({i1↦2,i2↦3},7)}

i1 i2

(c) Multi-value register.

{ }
addx

{ }

{x ↦{i1 ↦(1,True),
 i2 ↦(1,False)}}

{x↦{}}
rmvx{x ↦{i1 ↦(1,False)}}

{x ↦{i1 ↦(1,True)}}

addx{x ↦{i1 ↦(1,True)}}

rmvx

{x ↦{i1 ↦(2,False)}} rmvx
{x ↦{i1 ↦(1,True),

 i2 ↦(1,True)}}
addx

{x ↦{i1 ↦(2,False),
 i2 ↦(1,True)}}

i1 i2

(d) Remove-wins set.

Figure 1: Example executions.

The maximal elements construction is the basis for the creation of multi-value
registers that can store both single values and multiple values, when concurrent as-
signment occurs (see Section 5.7). This is the core data-type for tracking updates
to shopping carts in the original Amazon Dynamo framework [10], and occurs in
derived implementations such as the Riak Key-Value Store [4].

5 Abridged Catalog
In order to exemplify the composition constructs we present a small set of exam-
ple CRDTs. Simple query functions are included and all mutators are inflations.
Notice that join does not need to be defined as it follows from the composition
rules that were introduced. Figure 1 shows example executions of most CRDTs
discussed in this section.

5.1 Positive Counter

This simple form of counter can only increase. Replica nodes must have access
to unique ids among a set I; each can only increment its position in a map of



ids to integers. While increment mutators are parametrized by id i the query is
anonymous and simply inspects the state.

PCounter = I ↪→ N

inci(a) = applyi(succ)(a)

value(a) =
∑
{v | (i, v) ∈ a}

Notice that if a given node does not yet have an entry in the map and incre-
ments, then succ applies over ⊥, which for N was defined to be 0.

5.2 Positive and Negative Counter
This variation allows for both increments and decrements. A solution is to pair
two positive counters and consider the right side as negative. We use the standard
functions fst() and snd() to respectively access the left and right elements of a
pair.

PNCounter = (I ↪→ N) × (I ↪→ N)

inci(a) = (applyi(succ)(fst(a)), snd(a))
deci(a) = (fst(a), applyi(succ)(snd(a)))

value(a) =
∑
{v | (i, v) ∈ fst(a)} −

∑
{v | (i, v) ∈ snd(a)}

An alternative way to obtain a similar result is to use a lexicographic pair and
have the first element incremented when one needs to update the count on the
second element.

LexCounter = I ↪→ N � Z

inci(a) = applyi(id� succ)(a)
deci(a) = applyi(succ� pred)(a)

value(a) =
∑
{snd(v) | (i, v) ∈ a}

pred(x) = x − 1

While the PNCounter was one of the first CRDTs to be added to a production
database, in Riak 1.4 [4], the competing Cassandra database had its own counter
implementations based on the LWW strategy. Interestingly it proved to be difficult
to avoid semantic anomalies in the behaviour of those early counters, and since
Cassandra 2.1, a new counter was introduced [8] in line with the LexCounter.



5.3 Enable-wins Flag
A boolean flag that can be flipped, implemented in Riak under the name flag data
type [3]. It uses a lexicographic pair per replica, where the left (more significant)
element is a grow-only counter and the right element is a boolean. Enabling the
flag increases the counter and resets the flag to False, for the replica entry; dis-
abling the flag sets all booleans to True (maintaining the counters). The fact that
only the enable operation increases the counter, ensures that this operation takes
precedence over the disable operation. Flag starts disabled.

EWFlag = I ↪→ N �B

enablei(a) = applyi(succ�False)(a)
disable(a) = map(id � True)(a)

value(a) = ∃i, n · (i, (n,False)) ∈ a

5.4 Disable-wins Flag
The disable-wins flag is a dual construction of the enable-wins flag, and uses the
same state lattice. Disabling the flag increases the counter, while enabling the flag
sets all boolean to True. Flag starts enabled.

DWFlag = I ↪→ N �B

disablei(a) = applyi(succ�False)(a)
enable(a) = map(id � True)(a)

value(a) = @ i, n · (i, (n,False)) ∈ a

5.5 Add-wins Set
A set with add-wins semantics can be derived by creating unique tokens whenever
a new element is inserted, using for that a grow-only counter per replica, and
canceling these tokens, by setting a boolean to True, upon removal. Only elements
supported by non-canceled tokens are considered to be in the set.

AWSet = E ↪→ I ↪→ N �B



adde,i(a) = applye(applyi(succ�False))(a)
rmve(a) = applye(map(id � True))(a)

membere(a) = ∃(e,m) ∈ a · ∃i, n · (i, (n,False)) ∈ m

5.6 Remove-wins Set
A set with remove-wins semantics is derived by a dual construction to the previous
one, while sharing the same state lattice. Removal creates unique tokens, and
additions need to cancel all remove tokens that are visible in the state.

RWSet = E ↪→ I ↪→ N �B

rmve,i(a) = applye(applyi(succ�False))(a)
adde(a) = applye(map(id � True))(a)

membere(a) = ∃(e,m) ∈ a · @i, n · (i, (n,False)) ∈ m

5.7 Multi-value Register
A non-optimized multi-value register can be derived by lexicographic coupling a
version vector clock I ↪→ N with a payload value V . When a new value v is to
be assigned, a new clock, greater than all visible clocks in the state, is created
and coupled with the value. These pairs are kept in an antichain of maximal
elements. Thus, upon merge, concurrently assigned values will be collected, but
any subsequent assignment will again reduce the state to a single pair.

MVRegister = M((I ↪→ N) � V)

assignv,i(a) = {applyi(succ)(
⊔
{c | (c, v′) ∈ a}) � v}

values(a) = {v | (c, v) ∈ a}

Notice that the value is never updated without creating a new clock. Thus, lex-
icographic comparison (needed for the operation of the maximals join) is always



decided by the first component, and V can be any opaque payload with no need
for a partial order.

It is possible to improve the multi-value register construction, by keeping sin-
gle tags with each value entry and storing a common causal context [26], and by
compacting concurrent assignment of identical values [6]. Making such an im-
provement, while automatically deriving the join by lattice composition is still an
open problem.

6 Closing Remarks
This report collects several composition techniques for lattices, adopts the notion
of inflation and shows how it applies to the specification of state based CRDTs
over lattices. Most of the lattice compositions are very standard techniques from
order theory [9]. An early version of this work was presented at Schloss Dagstuhl
under the title Composition of Lattices and CRDTs and the summary of the pre-
sentation is available at [12]. Most of the CRDT constructions used here are
influenced by work in [2, 5–7, 20, 21].

The CRDTs selected for this small abridged catalog illustrate the potential
of lattice composition, but do not cover the whole spectrum of known CRDTs,
neither aims to be optimized. Further analysis on efficient implementations and
optimality results can be found on [1, 6].
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